Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department

Academic Program and Course Description Guide

Academic Program Description Form

University Name: .University of Thi-Qar..... Faculty/Institute: College of Engineering..... Scientific Department: Biomedical Engineering Academic or Professional Program Name: Biomedical Engineering . Final Certificate Name: BSc. in Biomedical Engineering..... Academic System: Bolonga Process..... Description Preparation Date: 10-4-2024 File Completion Date: 15-10-2024

Signature: Head of Department Name: Prof. Dr. Rafid M. Hannun Date: 15–10–2024 Minleasin

Scientific Associate Name: Prof. Dr. Mushtaq I. Hassan Date: 15–10–2024

Signature:

The file is checked by:

Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department:

1

Date: 17/10/2024

Signature: DWW E

Approval of the Dean prof. Dr. Adman A. Ugla 17- Oct. 2024

1. Program Vision

The Department of Biomedical Engineering looks forward to building engineering knowledge and developing biomedical engineering solutions that contribute to improving healthcare in Iraq.

2. Program Mission

- 1- To prepare well-qualified biomedical engineers and researchers to serve the needs of the healthcare institution as well as the needs of the academic institution.
- 2- Graduate students use their knowledge to solve practical biomedical problems within a scientific, economic, social, environmentally friendly and ethical framework.
- 3- To provide highly equipped and trained biomedical engineers.
- 4- To create a fruitful research environment in the field of biomedical study.
- 5- To prepare future scientific leaders by enhancing students' capabilities and leadership skills.

3. Program Objectives

- 1. Preparing students to serve their community by providing suitable scientific atmosphere that encourages their creativity and growth.
- 2. Contributing to the scientific research.
- Employing technology for serving humanity through the interaction between the engineering sciences and the biomedical sciences. Figuring out new topics, methods, and ideas to serve humanity.
- 4. The BME dept. continuously collaborates with other researchers from outside the department and especially from the medical field to identify

and address problems to solve in order to help the local community. It also encourages students to pursue ethical research path and promotes moral values inside them. Students with the highest ranks are encouraged and promoted.

- 5. Contributing positively to knowledge spreading in the society through holding conferences, open lectures, and meetings.
- 6. The department graduates are well prepared to enroll in prestigious graduate programs and research centers, locally and globally.

4. Program Accreditation

Does the program have program accreditation? And from which agency? No

5. Other external influences

Is there a sponsor for the program?

No

6. Program Struct	ture			
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*
Institution Requirements	5	11	%3.667	
College Requirements	6	30	%10	
Department Requirements	48	259	%86.333	
Summer Training	2	0	0	
Other	0	0	0	

3

* This can include notes whether the course is basic or optional.

7. Program Desc	ription			
Year/Level	Course Code	Course Name	Credit	Hours
1- FIRST COURSE			theoretical	
	BME101	Engineering Mechanics		
	BME102	Intro to Biomedical Engineering I	theoretical	practical
	ER104	General Biology	theoretical	practical
	ER105	Derivative and integration	theoretical	
	ER108	Engineering WorkShop	theoretical	practical
	UR101	Arabic language skills	theoretical	
1- SECOND			theoretical	practical
COURSE				
	BME103	Anatomy I		
	BME104	Electric Circuits I	theoretical	practical
	ER107	Computer Science	theoretical	practical
	ER103	Chemistry	theoretical	practical
	ER106	Engineering Drawing	theoretical	
	UR102	Basics of english language	theoretical	
2- THIRD COURSE			theoretical	
	ER205	Applied Mathematics		
	BME201	Science and Strength of Materials	theoretical	
	BME202	Anatomy II	theoretical	practical
	BME203	Intro to Biomedical Engineering II	theoretical	practical
	BME204	Medical Physics	theoretical	practical
	UR202	English language skills	theoretical	
2-FORTH COURSE	BME205	Digital Electronics	theoretical	
	ER207	Computer programming	theoretical	practical
	BME206	Electric Circuits II	theoretical	practical
	BME207	Biochemistry	theoretical	practical
	BME208	Biomaterials Engineering	theoretical	
	UR201	Human rights and democracy	theoretical	
3-FIFTH COURSE	BME301	Analog Electronics	theoretical	practical

	DMEDOO	Dhusialamu	theoretical	
	BME302	Advanced Biomaterials: Bio	theoretical	
_	BME303	Printing and Bio Fabrication	ineoretical	
	BME304	Medical Measurements I	theoretical	practical
	BME305	Transport Phenomena in BME	theoretical	
	BME306	Optics in Biomedical Engineering	theoretical	
3- SIXTH COURSE	BME307	Biomedical Signals	theoretical	
	BME308	Engineering Analysis and Numerical Methods	theoretical	
	BME309	Rehabilitation Science	theoretical	
	BME310	Thermodynamics in BME	theoretical	
	BME311	Medical Lasers	theoretical	practical
	BME312	Biomedical Circuits & Electronic	theoretical	practical
4- SEVENTH			theoretical	practical
COURSE				
	BME401	Pathology		
	BME402	Control Systems I	theoretical	practical
	BME403	Medical Measurements II	theoretical	practical
	BME404	Biomedical Engineering Systems	theoretical	practical
	BME405	Tissue Engineering	theoretical	practical
	BME406	Biomedical CAD/CAM	theoretical	practical
4- EIGHTTH			theoretical	practical
COURSE				
	BME407	Control Systems II		
	BME408	Artificial Organs	theoretical	practical
	BME409	Microprocessor & Microcontroller	theoretical	practical
	BME410	Bio Electronic Devices & Applications	theoretical	practical
	BME411	Surgical Robots	theoretical	practical
	BME412	BIO Instrumentation Design	theoretical	practical
5- NINETH	JWLTIL		theoretical	practical
COURSE				
COURSE	BME501	Engineering Project I		
	BME502	Biomedical sensors	theoretical	practical
	BME503	Biomedical Statistics	theoretical	practical

		BIO Instrumentation Design	theoretical	practical
	BME504	11		
	BME505	Clinical Engineering	theoretical	practical
	BME506	Biomedical Computer Desgin	theoretical	practical
5- TENTH COURSE			theoretical	practical
	BME507	Engineering Project II		
	BME508	Medical Image Processing	theoretical	practical
	BME509	BIO Instrumentation Design	theoretical	practical
	BME510	Biomechanics	theoretical	
	BME511	Artificial Neural Network in BME	theoretical	
	ER401	Engineering Ethics	theoretical	

8. Expected learning outcomes of the program

Knowledge Apply the principles of engineering, biology, and • Design and develop biomedical devices medicine to solve problems in human health: and systems: Students can demonstrate this by Students can demonstrate this by completing completing projects or research that involve the projects or research that use engineering design and development of biomedical devices or principles to solve problems in biology or systems. For example, they could design a new medicine. For example, they could design a new prosthetic limb, develop a new medical imaging medical device, develop a new drug delivery system, or create a new software program for system, or create a new computer model of a medical diagnosis. biological system. Skills

• Conducting research in the field of biomedical engineering: Students can demonstrate this by conducting research in a biomedical engineering laboratory. They can work on a project that investigates a new biomedical technology, develops a new biomedical device, or studies a biological system using engineering principles.	• Communicate effectively with engineers, scientists, and clinicians: Students can demonstrate this by communicating effectively with engineers, scientists, and clinicians. They can do this by writing reports, giving presentations, or participating in team meetings.
 Working effectively in teams: Students can 	Apply ethical and professional principles in
demonstrate this by working effectively in teams.	biomedical engineering. This outcome requires
They can do this by participating in group projects,	students to be aware of the ethical and
	professional responsibilities of biomedical

working on research teams, or volunteering for	engineers. They should be able to make ethical
community service projects.	decisions in their work and maintain professional
	standards in the field.
Ethics	
Be lifelong learners. This outcome requires	• To be creative and innovative. This outcome
students to be committed to lifelong learning. They	requires students to be able to think creatively
should be able to identify and acquire new	and come up with new and innovative solutions
knowledge and skills as needed to stay current in	to problems. They should be able to see the
the field.	world in new ways and find new ways to solve
	problems.
Be entrepreneurial. This outcome requires	Follow up on graduates and know their
students to be able to think and act like	performance
entrepreneurs. They should be able to identify and	
develop new career opportunities in the field of	
biomedical engineering.	

9. Teaching and Learning Strategies

Staff involved in the degree program utilize a wide range of teaching methods that they deem the most appropriate for a particular course. These include:

• Lectures where the students write information presented to them via slide show, overhead or written by the lecturer;

• Lectures where the students have some printed notes/handouts and may annotate, or expand these during a spoken lecture;

- Lecture material placed on web-pages or other e-learning environment;
- Small group and large group tutorial sessions;
- Question and answer sessions during lectures or staff Office Hours;
- Laboratory sessions.

10. Evaluation methods

Evaluation Methods to be used are:

- Written examinations (Summative assessment);
- Oral presentations of individual and group work;
- Individual written project report(s) of both individual and group projects;
- Homework;
- Take home exams;

• Practical skills will be assessed through laboratory experiments, write – ups, coursework reports, project reports and presentations;

• Experimental, research and design skills will be assessed through laboratory experiments write-ups, coursework reports, project reports and presentations;

• Presentation skills through group presentations and poster presentations.

11. Faculty						
Faculty Members						
Academic Rank	Specializatio	n	Special Requirements (if applicable)	s/Skills)	Number of th staff	e teaching
	General	Special			Staff	Lecturer
Professor	Mechanical Eng.	Thermal Eng.	Energy, Renewable, Biomedical		1	
Assist. Professor	Physical Science	Communication	Biosensor		1	
Lecturer	Computer Eng.	Computer Eng.	Biocomputer		1	
Lecturer	Control Control Eng.		Bio–Signal, Control Eng.		1	
Lecturer	Biology	Biology			2	
Lecturer	Material Engineering	Material Engineering			1	
Lecturer	Physical science	Physical science			1	
Lecturer	Biomedical Eng.	Biomedical Eng.			1	
Lecturer	Biomedical Eng.	Biochemical Eng.			1	
Lecturer	Electrical Eng,	Electrical Eng,			1	
Lecturer	Computer science	Computer science			1	
Lecturer	Mechanical eng.	Thermal1			1	

Lecturer	Law	Law		1	
Lecturer	Accounting	Accounting		1	
Assist Lecturer	Electrical Eng,	Electrical Eng,		3	
Assist Lecturer	Material Engineering	Material Engineering		2	
Assist Lecturer	Biomedical Eng.	Biomedical Eng.		1	
Assist Lecturer	Biology	Biology		2	
Assist Lecturer	Computer science	Computer science		1	
Assist Lecturer	Physical science	Physical science		1	
Assist Lecturer	Mechanical Eng	Mechanical Eng		1	
Assist Lecturer	Physical Education	Physical Education		1	

Professional Development

Mentoring new faculty members

D1. Apply in depth problem solving and analytical thinking to a diverse range of problems;

D2. Use appropriate multi-disciplinary skills to solve Biomedical Engineering

problems, combining the biological and engineering knowledge gained through the degree;

D3. Demonstrate numeracy and literacy in written reports, project work and examinations;

D4. Learn effectively for the purpose of continuing professional development and in

a wider context throughout their career.

Professional development of faculty members

D1. Apply in depth problem solving and analytical thinking to a diverse range of problems;

D2. Use appropriate multi-disciplinary skills to solve Biomedical Engineering problems, combining the biological and engineering knowledge gained through the degree;

D3. Demonstrate numeracy and literacy in written reports, project work and examinations;

D4. Learn effectively for the purpose of continuing professional development and in a wider context throughout their career.

12. Acceptance Criterion

- 1- Central admission
- 2- Private evening study
- 3- Central morning private education
- 4- Study in Iraq (from other countries)

13. The most important sources of information about the program

Ministry directives

14. Program Development Plan

Increase the number of courses to teach the program

			Pro	gram	Skills	Outl	ine								
				Required program Learning outcomes											
Year/Level	Course Code	Course Name	Basic or	Knov	Knowledge			Skills				Ethics			
			optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	С3	C4
1-FIRST COURSE	BME101	Engineering Mechanics	Basic												
	BME102	Intro to Biomedical Engineering I	Basic												
	ER104	General Biology	Basic												
	ER105	Derivative and integration	Basic												
	ER108	Engineering WorkShop	Basic												
	UR101	Arabic language skills	Basic												
1-SECOND			Basic												
COURSE	BME103	Anatomy I													
	BME104	Electric Circuits I	Basic												

	ER107	Computer Science	Basic						
	ER103	Chemistry	Basic						
	ER106	Engineering Drawing	Basic						
	UR102	Basics of english language	Basic						
2-THIRD			Basic						
COURSE	ER205	Applied Mathematics							
	BME201	Science and Strength of Materials	Basic						
	BME202	Anatomy II	Basic						
	BME203	Intro to Biomedical Engineering II	Basic						
	BME204	Medical Physics	Basic						
	UR202	English language skills	Basic						

2-FORTH			Basic						
COURSE	BME205	Digital Electronics							
	ER207	Computer programming	Basic						
	BME206	Electric Circuits II	Basic						
	BME207	Biochemistry	Basic						
	BME208	Biomaterials Engineering	Basic						
	UR201	Human rights and democracy	Basic						
3-FIFTH COURSE	BME301	Analog Electronics	Basic						
	BME302	Physiology	Basic						
	BME303	Advanced Biomaterials: Bio Printing and Bio Fabrication	Basic						
	BME304	Medical Measuremen ts I	Basic						

		Transport Phenomena	Basic						
	BME305	in BME							
	BME306	Optics in Biomedical Engineering	Basic						
3-SIXTH COURSE	BME307	Biomedical Signals processing	Basic						
	BME308	Engineering Analysis and Numerical Methods	Basic						
	BME309	Rehabilitatio n Science	Basic						
	BME310	Thermodyna mics in BME	Basic						
	BME311	Medical Lasers	Basic						
	BME312	Biomedical Circuits & Electronic	Basic						
4-SEVENTH			Basic						
COURSE									
	BME401	Pathology							
	BME402	Control Systems I	Basic						

	BME403	Medical Measuremen	Basic						
	BME400	Biomedical Engineering Systems	Basic						
	BME405	Tissue Engineering	Basic						
	BME406	Biomedical CAD/CAM	Basic						
4-EIGHTTH			Basic						
COURSE	BME407	Control Systems II							
	BME408	Artificial Organs	Basic						
	BME409	Microprocess or & Microcontroll er	Basic						
	BME410	Bio Electronic Devices & Applications	Basic						
	BME411	Surgical Robots	Basic						

		BIO	Basic						
	BME412	Instrumentati on Design I							
5-NINETH			Basic						
COURSE	BME501	Engineering Project I							
	BME502	Biomedical sensors	Basic						
	BME503	Biomedical Statistics	Basic						
	BME504	BIO Instrumentati on Design II	Basic						
	BME505	Clinical Engineering	Basic						
	BME506	Biomedical Computer Desgin	Basic						
5-TENTH			Basic						
COURSE	BME507	Engineering Project II							
	BME508	Medical Image Processing	Basic						

BME509	BIO Instrumentati on Design III	Basic						
BME510	Biomechanic s	Basic						
BME511	Artificial Neural Network in BME	Basic						
ER401	Engineering Ethics	Basic						

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

1. Course Name:										
2. Course Code:										
2 Compater / Veen										
5. Semester / Year:										
4. Description Preparation Date:										
5. Available Attendance Forms:										
6. Number of Credit Hours (Total) / Number of Units (Total)										
7. Course administrator's name (mention all, if more than one name)										
Name:										
Email:										
8. Course Objectives										
Course Objectives •										
•										
9. Teaching and Learning Strategies										
Strategy										
10. Course Structure										
Week Hours Required Learning Unit or subject Learning Evaluation Outcomes name method method method method										

										1	
11. 0	11. Course Evaluation										
Distribu prepara	Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc										
12. L	12. Learning and Teaching Resources										
Required	d textboo	ks (curricu	ılar boo	ks, if any	/)						
Main ref	erences	(sources)									
Recomm	Recommended books and references										
(scientific journals, reports)											
Electroni	ic Refere	nces, Web	osites								

1. Course Name: Analog Electronics

2. Course Code:

3. Semester / Year: First semester, 2024–2025

4. Description Preparation Date: 16/10/2024

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total) :60 hours

7. Course administrator's name (mention all, if more than one name) Name: M.Sc. Taif Nabeel Muslim Email: taifnabeel@utq.edu.iq

8. Course Obje	ctives
Course Objectives	Understanding basic electronic components.
	 Design and analysis of electronic circuits
	 Understanding frequency response of circuits and sig
	modulation.
	 Developing research and analytical thinking skills.
9. Teaching an	d Learning Strategies
Strategy	A. Theoretical lectures.
	B. Presentations and discussions.
	C. Self-reading and scientific research.
	D. Collaborate learning
	E. Continuous assessment
10. Course Structu	ıre

Week	Hours	Required	Unit or subject name	Learning	Evaluation method
		Learning		method	
		Outcomes			
1 st	4	Student's grasp of the lecture content.	Semiconductor materials	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
2 nd	4	Student's grasp of the lecture content.	Semiconductor diodes	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
3 rd		Student's grasp of the lecture content.	Diode Equivalent Circuits, Dc characteristics.	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
4 th	4	Student's grasp of the lecture content.	Diode Applications: Rectifiers	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
5 th	4	Student's grasp of the lecture content.	Clipping & Clamping Circuits	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
6 th	4	Student's grasp of the lecture content.	Zener Diodes	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
7 th	4	Student's grasp of the lecture content.	Bipolar Junction Transistor (BJT): Operation of pnp & npn transistor	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
8 th	4	Student's grasp of the lecture content.	Characteristics of CE, CB & CC Configurations Operating Point and Operating Regions	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
9 th	4	Student's grasp of the lecture content.	Biasing the BJT	Theoretical Lecture	Homework, daily quizzes, monthly exams, and final exams.
10^{th}	4	Student's grasp of the	Equivalent circuit model,	Theoretical Lecture	Homework, daily quizzes, monthly

		1			1
		lecture	analysis of		exams, and final
		content.	transistor		exams.
11 th	4	Student's	Design of dc bias	Theoretical	Homework, daily
		grasp of the	circuits, design of	Lecture	quizzes, monthly
		lecture	current gain		exams, and final
		content.	stabilized		exams.
12 th	4	Student's	Small Signal Low	Theoretical	Homework, daily
		grasp of the	Frequency Analysis:	Lecture	quizzes, monthly
		lecture	Transistor amplifier		exams, and final
		content.			exams.
13 th	4	Student's	Comparison of	Theoretical	Homework, daily
		grasp of the	BJT Amplifier	Lecture	quizzes, monthly
		lecture	Configurations		exams, and final
		content.			exams.
14 th	4	Student's	Cascading Amplifiers,	Theoretical	Homework, daily
		grasp of the	Simplified Models	Lecture	quizzes, monthly
		lecture			exams, and final
		content.			exams.
11.	Course E	Evaluation			
Distrib	uting the	score out of 100	according to the tasks a	ssigned to the s	student such as daily
prepar	ation, dail	ly oral, monthly, o	or written exams, reports	etc	-
12.	Learning	and Teaching	Resources		
Require	ed textbo	1. Electron	ic Devices and Circuit	Theory. Rob	ert L. Boylestad,
(curricu	ılar books	Louis Na	ashelsky.		
2014)		2. Electron	ic Circuits Handbook	for Design an	d Application, F.A.
any		Blosted			
		Diosteu.			
Main	referen	1. Boylesta	id, R., & Nashelsky, L.	(2014). Electr	onic devices and
(source	es)	circuit th	neory. Prentice Hall.		
	,	2. Blosted,	F. A. (2020). Electron	ic circuits: Ha	indbook for design
		and app.	lication. Wiley.		
Recom	mended				
books	and	" The Ar	t of Electronics" by Pa	aul Horowitz a	and Winfield Hill
referen	ces	" .Funda	mentals of Electric Ci	rcuits" by Cha	arles K. Alexander
(scionti	fic	and Mat	thew N. O. Sadiku.		
journals	S,	JOURNA	LS		
reports)	4 1999 1			
		1. IEEE Jou	irnal of Solid-State Cir	cuits.	
		2. Microele	ectronics Journal.		
		3. Internat	ional Journal of Electr	onics.	

1		
	4. Sensors and Actuators A: Physical.	
Electronic	1. <u>https://ieeexplore.ieee.org/</u>	
References.	2. <u>https://www.sciencedirect.com/</u>	
Websites	3. <u>https://www.allaboutcircuits.com/</u>	
vvebsiles	4. <u>https://www.electronicshub.org/</u>	
	5. <u>https://www.mdpi.com/</u>	
	6. <u>https://dl.acm.org/</u>	

1. Course Name: Electronics Laboratory

2. Course Code:

3. Semester / Year: First semester, 2024-2025

4. Description Preparation Date: 16/10/2024

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total) :78 hours

7. Course administrator's name (mention all, if more than one name) Name: Msc. Ahmed abdulkadhim salih Email: ahmed.kadhem300@utq.edu.iq

8. Course Objectives

Course Objectives	 Understanding basic electronic components. Design and analysis of electronic circuits Understanding frequency response of circuits and sig modulation. Developing research and analytical thinking skills. 								
9. Teaching and	d Learning Strategies								
Strategy	A. Theoretical lectures.								
	B. Presentations and discussions.								
	C. Self-reading and scientific research.								
	D. Collaborate learning								
	E. Continuous assessment								
10. Course Structu	10. Course Structure								

Week	Hours	Required	Unit or subject name	Learning	Evaluation method
		Learning		method	
		Outcomes			
1 st	4	Student's grasp of the lecture content.	Semiconductor materials	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
2 nd	4	Student's grasp of the lecture content.	Semiconductor diodes	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
3 rd		Student's grasp of the lecture content.	Diode Equivalent Circuits, Dc characteristics.	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
4 th	4	Student's grasp of the lecture content.	Diode Applications: Rectifiers	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
5 th	4	Student's grasp of the lecture content.	Clipping & Clamping Circuits	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
6 th	4	Student's grasp of the lecture content.	Zener Diodes	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
7 th	4	Student's grasp of the lecture content.	Bipolar Junction Transistor (BJT): Operation of pnp & npn transistor	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
8 th	4	Student's grasp of the lecture content.	Characteristics of CE, CB & CC Configurations Operating Point and Operating Regions	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
9 th	4	Student's grasp of the lecture content.	Biasing the BJT	Theoretical Lecture and Practical	Homework, daily quizzes, monthly exams, and final exams.
10^{th}	4	Student's grasp of the	Equivalent circuit model,	Theoretical Lecture and	Homework, daily quizzes, monthly

r	1				[]
		lecture	analysis of	Practical	exams, and final
		content.	transistor		exams.
11 th	4	Student's	Design of dc bias	Theoretical	Homework, daily
		grasp of the	circuits, design of	Lecture and	quizzes, monthly
		lecture	current gain	Practical	exams, and final
		content.	stabilized		exams.
12 th	4	Student's	Small Signal Low	Theoretical	Homework, daily
		grasp of the	Frequency Analysis:	Lecture and	quizzes, monthly
		lecture	Transistor amplifier	Practical	exams, and final
		content.			exams.
13 th	4	Student's	Comparison of	Theoretical	Homework, daily
		grasp of the	BJT Amplifier	Lecture and	quizzes, monthly
		lecture	Configurations	Practical	exams, and final
		content.			exams.
14 th	4	Student's	Cascading Amplifiers,	Theoretical	Homework, daily
		grasp of the	Simplified Models	Lecture and	quizzes, monthly
		lecture		Practical	exams, and final
		content.			exams.
11.	Course	Evaluation			
Distrib	outing the	score out of 100	according to the tasks a	ssigned to the s	student such as daily
prepar	ation, dai	ly oral, monthly, o	or written exams, reports	etc	-
12.	Learning	g and Teaching	Resources		
Require	ed textbo	1. Electron	ic Devices and Circuit	Theory. Robe	ert L. Boylestad,
(curricu	ular books	Louis Na	ashelsky.		
		2. Electron	ic Circuits Handbook	for Design an	d Application, F.A.
any		Blosted			
		Diosteu.			
Main	referen	1. Boylesta	ıd, R., & Nashelsky, L.	(2014). Electr	onic devices and
(source	es)	circuit th	neory. Prentice Hall.		
Ì	,	2. Blosted,	F. A. (2020). Electron	ic circuits: Ha	ndbook for design
		and app	lication. Wiley.		
Recom	mended			_	
books	and	" The Ar	t of Electronics" by Pa	aul Horowitz a	and Winfield Hill
referen	ces	" .Funda	mentals of Electric Ci	rcuits" by Cha	arles K. Alexander
	fie	and Mat	thew N. O. Sadiku.		
(scienti	IIC				
journal	S,	JOURNA	LS		
reports)				
		1. IEEE Jou	Irnal of Solid-State Cir	cuits.	
		2. Microele	ectronics Journal.		
		3. Internat	ional Journal of Electr	onics.	

1		
	4. Sensors and Actuators A: Physical.	
Electronic	1. <u>https://ieeexplore.ieee.org/</u>	
References.	2. <u>https://www.sciencedirect.com/</u>	
Websites	3. <u>https://www.allaboutcircuits.com/</u>	
vvebsiles	4. <u>https://www.electronicshub.org/</u>	
	5. <u>https://www.mdpi.com/</u>	
	6. <u>https://dl.acm.org/</u>	

1. Course Name: Signal processing

2. Course Code:

- 3. Semester / Year: First semester, 2024-2025
- 4. Description Preparation Date: 16/10/2024

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total) :60 hours

7. Course administrator's name (mention all, if more than one name) Name: Msc. Ahmed abdulkadhim salih Email: ahmed.kadhem300@utq.edu.iq

8. Course Objectives

Course Objectives	1. To teach students the concepts of digital and continuous signals, including
-	mathematical representations, characteristics, and frequency content.
	2. To teach students the concepts of digital and continuous systems, including
	representations, characteristics, and analysis techniques based on Fourier
	transforms and Z-transforms.
	3. To introduce filter design concepts.

9. Teaching and Learning Strategies		
Strategy	A. Theoretical lectures.	
	B. Presentations and discussions.	
	C. Self-reading and scientific research.	
	D. Collaborate learning	
	E. Continuous assessment	
10. Course Structur	e	

Week	Hours	Required	Unit or subiect name	Learning	Evaluation method
		Learning		method	
		Outcomes		method	
1 st	4	Student's grasp of the lecture content.	Fundamental Digital Signal Processing, application of DSP, Continuous time signal vs. discrete time signal	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
2 nd	4	Student's grasp of the lecture content.	Discrete time signal and sequence and continuous signal.	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
3rd		Student's grasp of the lecture content.	Standard of signal , Unit sample, Unit step , Unit ramp , Exponential sequence	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
4 th	4	Student's grasp of the lecture content.	Classification of signal and system properties : Static and dynamic, shift invariant ,causal system	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
5 th	4	Student's grasp of the lecture content.	Classification of signal and system properties : linear and stable system	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
6 th	4	Student's grasp of the lecture content.	Convolution: Direct method ,graphical method, numerical method	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
7 th	4	Student's grasp of the lecture content.	Convolution: continuous method ,graphical method, numerical method	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.
8 th	4	Student's grasp of the lecture content.	Correlation time sequence	Theoretical And practical Lecture	Homework, daily quizzes, monthly exams, and final exams.

G th	Д	Student's		Theoretical	Homework daily
<i></i>	т	grasn of the	Frequency domain	And	auizzes monthly
		lecture	representation	nractical	evams and final
		content	representation	Locturo	exams, and iniai
1 Oth	1	Student's		Theoretical	Homowork daily
10.	4	grace of the	Discreat Fourier	And	auizzog monthly
		grasp or the	transform DET	Allu	quizzes, monuny
		lecture	transform DFT,	Locturo	exams, and inial
1 1 th	1	Content.		Theoretical	Ucomoruonia doilar
11"	4	student s	Inverse discrete	Locturo	nonnework, daily
		grasp of the	Fourier transform	Lecture	quizzes, monuny
		lecture	IDFT		exams, and inial
1 Դ th	1	Content.		Theoretical	exams.
12	4	Student S	Fast Fourier	And	Homework, daily
		grasp of the	Fast Fourier	And	quizzes, monthly
		lecture	transform	practical	exams, and final
1 0+h	1	Content.		Theoretical	Ucomorrarla deiler
13 ¹¹	4	Student S	Introduction to Z	Ineoretical	nomework, dally
		grasp of the	t	And	quizzes, monthly
		lecture	transform	practical	exams, and final
1 4 th	4	Content.		Lecture	exams.
14 ¹¹¹	4	Student s	Properties Z	Ineoretical	Homework, daily
		grasp of the	· · · · · · · · · · · · · · · · · · ·	And	quizzes, monthly
		lecture	transform	practical	exams, and final
		content.		Lecture	exams.
11.	Course E	Evaluation			
Distrib	uting the	score out of 100	according to the tasks a	assigned to the s	student such as daily
prepara	ation, dail	y oral, monthly, o	or written exams, reports	s etc	
12.	Learning	and Teaching	Resources		
Require	ed textbo	Signal process	ing book		
(curricu	lar books				
(
any)					
Main	referen	 Hayes, Mon 	son H. Schaum's Outli	ne Digital Sigr	al Processing.
(sources)		1999.			
`	<i>.</i>	 "Introduction 	n to digital signal proc	essing with con	mputer
		Applicat	ion", Paul Lynn, 1993.		
Becom	mondod				
Recom	Recommended 1 IEEE Journal				
DOOKS and		2 Riomodical Journal			
referenc	references 2. Diometrical Journal.				

(scientific	
journals,	
reports)	
Electronic	1. <u>https://ieeexplore.ieee.org/</u>
References,	2. <u>https://www.mdpi.com/</u>
Websites	3. <u>https://dl.acm.org/</u>