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Chapter 1

Introduction to Dynamics

BY: JAAFAR MOHAMMED HAMZAH

M.Sc. Mechanical Engineering



m A branch of physical science which deals with the effects of

forces on objects

m Two parts: Statics (equilibrium of bodies) and
Dynamics (motion of bodies)

m Applications:

O Strength of structures and machines (houses, robots, cars, airplanes)
O Vibrations (engine vibrations, bridges, wheels)

O Fluid mechanics (airplanes, fluid machinery)

O Electrical machines and apparatus (motors, transducers)
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Mechanics Fields of Study

m Statics
O Rigid bodies in equilibrium - Forces

m Dynamics
O Rigid bodies in motions — Forces and motions

m Strength of Materials (Mechanics of Materials)
O Deformable bodies in equilibrium - Strength and deformation

m Fluid Mechanics
O Deformable bodies in motions — Pressure and flow

m Mechanics of Machinery
O Dynamics of mechanism including linkages

m Vibration
O Rigid and deformation bodies in repetitive motions



Dynamics — Kinematics of particles
Analysis of bodies in motion

1) Kinematics

» study of the geometry of motion
= relate displacement, velocity, acceleration, and time without

reference to the source/cause of motion
2) Kinetics
» study of the relations existing between the forces acting on a
body, the mass of the body, and the motion of the body
* To predict the motion caused by given forces or to determine
the forces required to produce a given motion.

Rectilinear motion: position, velocity, and acceleration of a

particle as it moves along a straight line
Curvilinear motion: position, velocity, and acceleration of a

particle as it moves along a curved line



" JEE

Applications of Dynamics

m Robot Arm
m Car Engine
m Vehicle Dynamics

O braking /accelerating
0 cornering
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Learning Strategies

Recommendation:

m |f possible, read ahead

' read ahead (+20% understanding), class
(+30%), exercise (+40%)

B [wo notebooks: for notes and exercises

m EXxercise:

~1do exercise before looking at solutions
“Ido In steps and make it easy to read

1 In case of getting stuck, ask or look at solutions



Exam Strategies

m Do step by step

m \Write the laws to be used: 2" |aw. ..

m Draw Free Body Diagram

m Show coordinates: x, y...

m Define variables

m Show calculations

m State directions of vectors: vel, acc, force...
m Show units at numerical answers: N, m/s...
m Use common sense to check the answer

m Make it clean



Who Is Newton?

Born: 1643 in England
Physicist, Mathematician, Astronomer, Philosopher etc.

“Mathematical Principles of National Philosophy” known as
“Principia” (1687)

Classical mechanics: Laws of Gravitation, Laws of Motion

Calculus, Reflecting telescope, law of cooling, speed of

sound, Newton’'s method for finding roots of a function, power
series etc.




Chapter 2

Kinematics of Particles

BY: JAAFAR MOHAMMED HAMZAH

M.Sc. Mechanical Engineering



Kinematics of Particles

What is Kinematics of Particles?

m  Study of motion of bodies (assumed as particles)
without reference to forces

m  Kinematics of Particles "describes" motion of particle,
generally, the relations between

O Position/displacement e e

O velocity

O Acceleration

m Easy example: A car —

O Given the velocity as a function of time, how far did the car moved for a
given period of time? What is the acceleration at each point in time?



Kinematics of Particles

Topics
m One dimension
m Rectilinear
m Two dimensions
m Rectangular Coordinates (Xx-y)

m Normal and Tangential Coordinates (n-t)

m Polar Coordinates (r-9)
m Relative Motion



2/2 Rectilinear Motion




ST
Rectilinear Motion ’

=0 t=25s

= Motion In a straight line K

|
t=10.40s

5.\

1. Displacement and Instantaneous Velocity
2. Instantaneous Acceleration

3. Graphical Interpretation

4. Special Case: Constant Acceleration

5. Examples
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Rectilinear Motion
1. Displacement and Instantaneous Velocity

m For a straight motion of a particle;

m Position of P Is specified
by the displacement s
(scalar) measured from

W—— L HNY A A some fixed point O.
‘ s "*!,}_\f! m During At sec, P moved

Asm

m Average speed,
Vay = AS/At m/s

Instantaneous Velocity

ds_.

V=— = — i As
df S mV=Ilima¢_o 33
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Rectilinear Motion
2. Instantaneous Acceleration

m Similarly, we can define instantaneous acceleration
m At time {4 the velocity is vy, at time > the velocity is v»
m So the average acceleration is

- g =
At bH -1
m Again, taking the limitas At — Qort, — ty,

—ﬂ—\'f or a_d_"’s
odt ~ dt2

B Using the equations, we have vdt —ds and adt —dv

m Eliminating dt, we have Instantaneous Acceleration

vdv = ads

aav

a — 8
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Rectilinear Motion
Notes on directions

m Positive direction of a, v, and s must be the same!

m |f we defind +s to the right

m V and a pointing to the
right are positive.

| 1 m Positve v means s is
5 As Increasing (since ds is

positive).

m Similarly, positive a means
Vv Is increasing.



" JEE
Rectilinear Motion
3. Graphical Interpretation

m Slope of s-f curve =
t velocity

m Slope of v-f curve =

/ acceleration
|
/ dv . |
(b) | A=
1
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Rectilinear Motion
3. Graphical Interpretation

m The usual interpretations: Area under curves
L'!

m Area under v-t curve =
(changes in) displacement

t S2
/ vdr:/ ads = S> — $q
I f1 =1

m Area under a-t curve =
(changes in) velocity

() —\ ) V3
' a / adt:/ dv= vo—vy
JUt Vq

(b
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Rectilinear Motion
4. Special Case: Constant Acceleration

Constant Acceleration: v(f)

vit)=vy+a(t - t)

Constant Acceleration: v(S)

V4(S) = v + 2a(s — S¢)

Constant Acceleration: s(t)

a
S = §¢ +V1(f—t1)+§(t—f1)2

11
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Rectilinear Motion
Example 1.

The velocity of a particle which moves along the s-axis is given by
v =2 — 4t + 5t3/?, where t is in seconds and v is in meters per
second. Evaluate the position s, velocity v, and acceleration a when
t = 3 5. The particleis at the position s, = 3m whent = 0.

Solution: U= 2-4t+ 5t Y=

dv 5 |, /o
A= 4t = — 4+ 2_t

ds 2/
4t = = "'4't - St

- t

{ds = ((z-4t+ 56¥) at

S.= 3 0
s = 3+2t-24> + 2t 72

At £ =3s : (s =22.2m




Rectilinear Motion
Example 2:

The main elevator A of the CN Tower in Toronto rises
about 350 m and for most of its run has a constant speed
of 22 km/h. Assume that both the acceleration and

deceleration have a constant magnitude of ig and

determine the time duration t of the elevator run.
Solution: Acceleration period :

| , 22 9.8\
V=V, +at ¢ 2L =08 —4+,a ,

to= 2.4 s

Note That The deceleration time ty= tq

2 - 3 2 \2
U =Yy + La as ¢ —E:"‘;) = 0%+

As = T1.6lm= aS
o d

4 AS,

Cruise period AS. = 350-4s, —-ASy; =335 m

AS=VU. T, ¢ 335~= i—i‘tc) t.=5438s

Total runtime t= T+t +ty

59%¢




Rectilinear Motion

HW 1:

The car traveling at a constant speed v, = 100 km/h on the level
portion of the road. When the 6-percent (tanf = 6/100) incline is
encountered, the driver does not change the throttle setting and
consequently the car decoration at the constant rate g sinf. Determine
the speed of the car (a) 10 seconds after passing point A and (b) when

s = 100m. Ans. (a) v =219 m/s, (b)v = 25.6 m/s
&0 S “
s P
A

H.W 2: Solve problems: 2/5, 2/10, 2/44 in the Book (Meriam 6" Edlizion).



2/3-6 Plane Curvilinear

Motion

BY: JAAFAR MOHAMMED HAMZAH

M.Sc. Mechanical Engineering
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Plane Curvilinear Motion

= Motion in a plane (2 dimensions)

}m 60 m

1. Rectangular Coordinates (x-y)
2. Normal and Tangential Coordinates (n-t)

3. Polar Coordinates (r-0)



Plane Curvilinear Motion
1. Rectangular Coordinates (x-y)

2. Normal and Tangential Coordinates (n-t)

f

3. Polar Coordinates (r-0) f no

e‘“{f n 3 r
Notes: Usage will depend on the situation. W f“‘-‘-f;
Usually, more than one system can be used. tn B

Many times mgre than one system is needed at the same time -
ath ath




2/4 Rectangular

Coordinate (x-y)

Applications:

— | S
. - % = ey % e - e 1
S Tl

e T B,
ST =
P i B, T o
- g, e iy, e iy 8 b
o e e
- i g H"'\-\_\_ i, " < &
E e T

Motorized x-y table A model of the x-y table Projectile Motion
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1. Rectangular Coordinates (x-y)

Path

Position vector: I=X1+)J
Velocity vector: V=Xi+)f=v,i+V,j

Acceleration vector: G =i +3j =v,7 +7, ]

Magnitude & Direction
- Pythagoras

r=+xt+y’

V=V, +v,

a= Jn_f +ni
- Trigonometry (sine and
cosine laws, etc.)
€g. v

tan9 =—-

Vi
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1. Rectangular Coordinates (x-y)

Projectile Motion

For the shown axis, it T

can use the laws of E

motion with constant E e 0,
acceleration in the % |

projectile motion (ty)g = |
application as follows: *

— e — ——————————— — —— —— — T— — — — — — ‘x

a. =0 a, = —g (24)g = v cos 6

Notel: if the projectile is U =00 Ve =)y — 8¢
directed upward then: " iy ..
a, = —§ x =xo + W)yt Y =% + Wkt — ng.a
. L
Else if it directed v, = W,)o" — 280y — ¥o)

d . B
ownward then: i, =g Note2: v, = (v,)y always const. then: a= 0




1. Rectangular Coordinates (x-y)

Example 1:
The basketball player likes to release his foul shots at an
angle ¢ = 50° to the horizontal as shown. What initial speed

Vo Will cause the ball to pass through the center of the rim? B
T

Solution:

'
Use ’K"\‘j Cnurdsnc::5 With an]m G.‘t The 9
release pomk | & | | 3m
N= Mo ¥ '\]"bt @ haup . 4 = G*QJQ Cu,s.Sn“)tF 2.1m

-t“F = f).zz.}u“
Y= Yo + Uyt = th @ h“‘-"F" 4m -
3=+ t’ o= E ="
O

Vo =7 m/s




1. Rectangular Coordinates (x-y)

Example 2:

Given: Projectile fired off acliff as shown: g 5

Find: x at impact and Y ax
Solution:

Time of fhsht frem y motidn?
4= 4o +Ug) b = 441" "
~150+6 + (120 Sinze)t —4 (BEOE
t= 1494\ s
Now Solve for xm'aad:
x=Yo <) £
xlu\;u.*='° + IEDMS?AO)“q-QI)
. me act = -1 MJ

Ymay occurs where ‘U‘.‘:.co
'U.d"f- Ql'na\:'-;lg. Cig=%e)
D¥: (IPO&M QO)L-J (943!)(%“3,'0)
mmavi' 43 W\\

——
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1. Rectangular Coordinates (x-y)

vy = 100 ft/lsec -

Example 3:

A projectile is launched from point A with / |
an initid speed shown. Determine the 2 N
minimum value of the launch angle a for g %
which the projectile will land at point B. e J

iJ o 360/ |

Solutlon With N Caordinates ) Qnd:ﬁ gt A il

Check &% Corner [('K,‘j): (280; o)]:
&) 270

N= N +'"‘]M°E (?@B ; 3("02 0‘+ QOO CT)tF (2 te = |60 cos 26.8° - 3V sec

=\ ~ZatU @B -go=0+ (00simat)t, - 32,2 . .
3T Ys +y,b =g | } )t - =G )::) Ye = ]oost&.K"(&l‘})' 3?12 (3.1 = —16.94 ft
Simultonesss sslutons of (1) £(a) : _ So  CandiXisas (G) are not Possikle.

= — 9 230
te = 4,08 Sec, = 26,8 (O Wt = TR 4,42 sec
ts = 5.68 sec y &= 50.7° (b) 3 : ' 32.2 2
Yo = 100.5m-50.7°(4.4?_)- = (4' 4-2_) = 7.5 X

CondL"t‘lEms (1:-) resyl\t ;r\ cleavance &L Coarner

Ans, o= 9T




1. Rectangular Coordinates (x-y)

Example 4:

A boy throws a ball upward with a speed vy = 12 m/s. | i —
The wind imparts a horizontal acceleration of 0.4 m/s* i

to the left. At what angle # must the ball be thrown so ol ——
that it returns to the poin. of release? Assume that =4 /ﬁ e V10

the wind does not affect the vertical motion.

Solution:

i

'Uxo= Uy snQ= 12 sind
’U\\jo = 'Uo QDSG = l2~ CQSG
U.B:U':}D- St C*-??l"l &t E‘nd Q‘F F1l\'j\”«i :

)

Uy = "ch— c.4¢ er\'l?d «t end of ﬂbh’ci

-12sin @ = 128in B —0.4(2.45 Cos e)
24sn 6 = 0.979 cos © \ tan©® = 0.04

g = 35° 10




" JEE
H.W1:

A projectile is launched with an initial speed of 200 e

m/s at an angle of 60° with respect to the horizontal. |

Compute the range R as measured up the incline,
Ans. R = 2970 m

H.W 2 BT
Water issues from the nozzle at A, which is 5 ft 2 m

above the ground. Determine the coordinates of the it at
point of impact of the stream if the initial water 5 I/ 60°

speed i= (a) v, = 45 ft/sec and (b} v, = 60 ft/zec. L ——

Ans. (a): (x,y)=(30ft,28.3ft) - a0 20
(b): (x,y)=(99.6 ft,0)

11



2/5 Normal and

Tangential
Coordinate (n-t)




m Introduction

m Velocity

m Acceleration

m Special Case: Circular Motion
m Examples

2103-212 Dynamics, NAV, 2011



m Most convenient when position, velocity, and
acceleration are described relative to the path of the

particle itself
m Origin of this coordinate moves with the particle (Position
vector IS zero)

m The coordinate axes rotate along the path

t coordinate axis is tangential to the path and points to the
direction of positive velocity.

n coordinate axis is normal to the path and points toward
center of curvature of the path.

2103-212 Dynamics, NAV, 2011 3



Applications

m Moving car

Forward/backward velocity and
forward/backward/lateral acceleration make more
sense to the driver.

Brake and acceleration forces are often more
convenient to describe relative to the car (in the t
direction)

Turning (side) force also easier to describe relative to
the car (in the n direction)

2103-212 Dynamics, NAV, 2011



Velocity

m For a short period of
fe} time, dt

m Path from A to A’ can be
approximated as an arc

Path

of a circle
8 g B The center of the circle
\\; ~f Is at C, the center of
g~ curvature.

m The radius of this circle
Is call the radius of
curvature, p

Notes:
m The center of curvature C can move

m Radius of curvature p is not constant
2103-212 Dynamics, NAV, 2011
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2. Normal And Tangential Coordinate (n-t)

Velocity

m During dt, &, rotated d /4
B Distance travelled is

ds = pdj3
m Recall that v is tangent

to the path and that
v = ds/dt

Velocity (n-t)

V = Vét :pﬁéf

2103-212 Dynamics, NAV, 2011 6



Acceleration

. . de oA
ma=dv/dt :thrJrve,
m Now we need dde;f

m From the figure, &; changes d/3 in dt

d ér = |é;‘ X djén

Derivative of &;
déf -y
—_ —fe
a 7"

Acceleration (n-t) an = — =P =visp
}

2103-212 Dynamics, NAV, 2011 7
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2. Normal And Tangential Coordinate (n-t)

: B b
Acceleration PN T
Directions of a, and a, j’/ ;/L

.‘"/ .""/
/ /
Ix --c—if
z’/ ;(/
27N
Speed Speed
increasing decreasing

(a) (b)
The arrows show the acceleration of a particle is moving from Ato B

If speed is increasing a, // v // e,
If speed is decreasing a, // - v /I - e,

a, Is always directed toward the center of curvature

2103-212 Dynamics, NAV, 2011 8



v and a,

The formula for the velocity/acceleration Iin the t direction
Is the same as those of rectilinear motion.

_______________________________________________________________

2103-212 Dynamics, NAV, 2011
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2. Normal And Tangential Coordinate (n-t)

Geometric representation

\ A

B a, is a result of change in the
magnitude of v

m a; Is a result of change in the
direction of v

2103-212 Dynamics, NAV, 2011 10



Special Case: Circular motion

-
-~

m Radius of curvature p
becomes constant radius r

m s an angle ¢ from any
reference to OP

Circular Motion (n-t)

v = ré
a, = V2/r=rb?>=vb
a = v=rh

2103-212 Dynamics, NAV, 2011 11



Example 1: Car on a hill

To anticipate the dip and hump in the road, the driver of a
car applies her brakes to produces a uniform deceleration.
Her speed is 100 km/h at the bottom A of the dip and 50
km/h at the top C of the hump, which is 120 m along the
road from A. If the passengers experience a total
acceleration of 3 m/s? at A and if the radius of curvature of
the hump at C is 150 m, calculate (a) the radius of curvature
pat A, (b) the acceleration at the inflection point B, and (c)

the total acceleration at C.

om C
.0 m
? ANS: PA = 432m

B 150m  ag = 2.41m/s? in -t direction

l a—=12866, —2.418&; m/s?

2103-212 Dynamics, NAV, 2011 12



Example 2: Pendulum

Write the vector expression of the acceleration a of the
mass center G of the simple pendulum in both n-t and x-y
when 6=60°,0=2rad/s and 6 =2.45 rad/s”

2103-212 Dynamics, NAV, 2011

13



Example 3: Crank and Slot

Pin P in the crank PO engages the horizontal slot in the
guide C and controls its motion on the fixed vertical rod.
Determine the velocity and the acceleration of the guide C
ifa) 6=0 6=0

b) 6=0 6=«

. |

y

Ans:a) Y=rosin®  y=ro’coso !
h) ¥=0 Y =rasino

2103-212 Dynamics, NAV, 2011

14



Example 4: Baseball

A baseball player releases a ball with the initial conditions
shown. Determine the radius of curvature of the trajectory

a) just after release and b) at the apex. For each case,
compute the time rate of change of the speed.

vo = 30 m/s

Ans: a) 105.9 m, -4.91 m/s?
b) 68.8 m, 0 m/s?

2103-212 Dynamics, NAV, 2011 15



2/6 Polar

Coordinates (r-6)




m Position

| . . ¢ dé
= Time derivative of unit vectors: " and "
m Velocity

m Acceleration
m Special Case: Circular Motion
m Examples

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)
Applications

Radar tracking

Robot Manipulator

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)

Position Vector m Define a reference frame

then the define r and ¢
m The position vector

m &, is the unit vector in
the direction of r

&, = cos(f)i+sin(f)]
B &, is the unit vector in the @ direction

My

&y = —sin(f)i+ cos(f)]

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)

Velocit
’ 9(rer) _ ;g +  der
dt ! dt

V =

Time derivative of unit vectors

~ )

&, = cos(f)i+sin(f)]

de,  d :
i —(cos(8) i+ sin(f)))
— —sin(8)di + cos(H)d]
d
@
note that 9 = 0 and g—j = &y = —sin(A)i+ cos(h)]

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)

Time derivative of unit vectors

)

&y = —sin(A)i+ cos(h)]

dé, d, . .- :
i E(—sm({%')lth:a:u?,({i')j)

— —cos(f)Ai —sin(9)d]

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)
Velocity

Acceleration
. d .. L
a = E(rerJrrﬁeg)
d

won o d N e - .d
= re,+r—e,+rbeg+rbey +ri—ey

dt dt
— F& LF08y+1Hé, +rié, —rt?é,

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)

Acceleration
Acceleration (Polar)
a=(F—rf?)é +(ro+2rb)é,
a, = —ré? ag =ro + 2rf

a:\/a?Jrag

2103-212 Dynamics, NAV, 2011
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3. Polar Coordinates (r-6)

Circular Motion

m &, points from O toward
P

m €, perpendicular to €,
and toward positive ¢

m Velocity
Vr — f' — 0
Vg = rb

m Acceleration

ar = F—ro*=—r¢?
ag = rl+2r0=rb

2103-212 Dynamics, NAV, 2011



Example 1: Robot Arm

The robot arm Is elevating and extending simultaneously. At
a given instant, # = 30°, # = 10 deg/s constant, / = 0.5 m,

| =0.2m/s,and | = —0.3 m/s2. Compute the magnitude of
the velocity, v, and acceleration, &, of the gripped part P. In
addition, express vV in terms of the unit vectors i and I

Vi = 02mls a = -0.338
v = 0.218 m/s ag = 0.07
vV = 0.064i + 0.289jm/s

2103-212 Dynamics, NAV, 2011 10



Example 2: Hydraulic Cylinder

The piston of the hydraulic cylinder gives pin A a constant
velocity v = 1.5 m/s in the direction shown for an interval of
its motion. For the instant when # = 60°, determine r, r, 4,

and #, where r = OA

/

150 mm

\ .

Ans: -0.75 m/s, 7.5 rad/s, 9.74 m/s?,
65 rad/s?

2103-212 Dynamics, NAV, 2011 11




Example 3: Two links

Link AB rotates through a limited range of the angle 3, and
its end A causes the slotted link AC to rotate also. For the
instant represented where 5 = 60" and 3=0.6radls
constant, determine the corresponding values of r, T, 9, and

i . Ans: r—=0.078m/s # = —0.3rad/s
e 150 mm ———| F=-00135m/s2and =0

2103-212 Dynamics, NAV, 2011 12
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Three Coordinates (x-y, n-t, r-6)

I T

Origin fixed moving with fixed
particle
moving with moving with
O L a— o particle (tangent particle (along and
and normal to the normal to the
path/velocity) radius)
Airolane. Car Radar, Satellite
Applications Projectile motion pRock’et ’ Dish, Slotted link,
Robot arm, Cable
Path, Radius of
Keywords Horizontal, vertical curvature, normal, Radial, transverse

tangential, change
in speed

2103-212 Dynamics, NAV, 2011 13



2/8 Relative

Motion (translating
axes)

2103-212 Dynamics, NAV, 2011 1



m Introduction

m Velocity and acceleration relation
m Choices of coordinates

m Examples

2103-212 Dynamics, NAV, 2011



m Absolute Motion

Motions relative to a non-moving and non-rotating reference
frame is called absolute motion.

For engineering problems on earth, a reference frame fixed on
earth is considered fixed (or not moving and not rotating).

A fixed observer on earth that is not moving and not rotating can
be used to observe absolute motions of bodies.
m Relative Motion

However, many times motions are often easier to describe relative
to a moving reference frame or moving observer.

Here we will look at motions relative to translating reference
frame; I.e., moving but not rotating.
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Relative Motion

m Motion of A is easier to m Absolute velocity of the
describe using a plane = the velocity of
reference frame fixed to the plane relative to the
the carriage ship + absolute velocity

m A moves in a circle of the ship

relative to the carriage.
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Suppose a man is walking on a really long moving walkway
shown in the picture. The moving walkway as a constant
speed of 0.5 m/s. The man is walking at a constant speed of
1 m/s relative to the walkway. Suppose he dropped his hat
but did not notice. So, he kept walking. After 30 second, he
found out that he dropped his hat. So, he turned back and
started walking back to get this hat at the same speed as
before. How long will it take for the man to walk back to his
hat?
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m 7, is the absolute
position vector of A

m /g is the absolute
position vector of B

m Let attach an observer
at B fixed on yBx

B g is the relative
position vector of A
relative to yBx; i.e.,
relative to the observer
at B.

Fixed reference frame Moving reference frame (translating only)
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v and a relationship
=18+ 7B

l

Relative Velocity

Va = Vg + Vap

Relative Acceleration

I

—+

a) = _"B + gﬂfﬁ

C /g Is the velocity of A as observed by B
m A/B will be used only when B is not rotating.
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Choices of coordinates

Any of the three coordinates can be used for the fixed frame
or the translating frame (moving but not rotating).

—>
i’

m n-t or r-6 for motion of A m Convenient to use X-Y
relative o O to denote the fixed frame

m x-y for motion of the m And, x-y for the moving

carriage frame
2103-212 Dynamics, NAV, 2011



Example 1: Two planes

Passengers in the jet transport A flying east at a speed of
800 km/h observe a second jet plane B that passes under

the transport in horizontal flight. Although the nose of B is

% pointed in the 45° northeast
\ direction, plane B appears to
‘,\ A the passengers in A to be
e i moving away from the
transport at the 60° angle as

shown. Determine the true

/ I
/ % _l velocity of B.
4/4:? %}J .“‘ ol
Z Ans: 717 km/h
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Example 2: Two cars

Car A rounds a curve of 150-m radius at a constant speed
of 54 km/h. At the instant represented, car B is moving at 81
km/h but is slowing down at the rate of 3 m/sZ. Determine
the velocity and acceleration of car A as observed from car
B. [Extra] Find the curvature of A as observed from B.

il
i

Ans: v, = 15i - 22.5] m/s, a,g = 4.5] m/s?

2103-212 Dynamics, NAV, 2011
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Example 3: Two planes

Airplane A is flying horizontally with a constant speed of 200
km/h and is towing the glider B, which is gaining altitiude. If
the tow cable has a length r = 60 m and ¢ is increasing at
the constant rate of 5 degree per second, determine the

magnitudes of the velocity v and acceleration a of the glider
for the Lnstant when 6 = 15°.

Ans: v=206 km/h, a = 0.457 m/s?

2103-212 Dynamics, NAV, 2011
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Constrained Motion

1. One Degree of Freedom
2. Two Degree of Freedom

3. Examples



"
Constrained Motion

X
1. One Degree of Freedom ;
A - 2{"2 b
- 1‘-../
" Simple system of two
interconnected particles. o '3
= With Z, /2 77, and b are A’/ ol lc
h X~
constant A~ /

" Horizontal motion () of Ais

twice the vertical motion ()
of £

" Only one variable (xor )) is
needed to specify the . .
positions of all parts of the O=x+2y O=v, +2v,

svstem O0=x+2y 0= a, 2(?3

T
L :x+3rz +2y+m+b



"
Constrained Motion

One Degree of Freedom: Exercise

fe— x —

L_ﬁ) 1 4 !

Block A has a velocity of 3.6 ft/s to the right.
Determine the velocity of cylinder 5.

1



" JEE
Constrained Motion
One Deqgree of Freedom: Another Exercise

T I

3 R

The scaffold is being raised. Each winch drum has a
diameter of 200 mm and turns at the rate of 40 rpm.

Determine the upward velocity of the scaffold.



Constrained Motion

2. Two Degree of Freedom

Position of lower cylinder depends
on two variables (y4and y»)

L,=vy,+2y,+constant
Ly=yp+ v+ (yc —yD)Jr constant

0=y, +2yp—L0=yp +2¥c _}.’Dx _ _ _
0= Ji, +2¥) —0Q= Fa + 2 ~Fm_ g:}fﬁ;{ﬁj}j(j
=V, TV Ta)e




Constrained Motion

Two Deqgree of Freedom: Exercise

& x,
B

-t

Each of the cables at 4 and

£ is given a velocity of 2 m/s
in the direction of the arrow.
Determine the upward

velocity of load 772.



"
Constrained Motion

Example 1: +

In the pulley configuration shown besides, i
cylinder A has a downward velocity of 0.3 ﬁ
m/s. Determine the velocity of B. - -

B

The centers of the pulleys at A and B are located by the coordinates yA and yB

measured from fixed positions. The total constant length of cable in the pulley
system is

Solution.

L =3yB + 2yA + constants

where the constants account for the fixed lengths of cable in contact with the
circumferences of the pulleys and the constant vertical separation between the
two upper left-hand pulleys. Differentiation with time gives

0=3y'B+2y'A
Substitution of y'A = 0.3 m/s gives

yB=-0.2m/s



"
Constrained Motion

Example 2: (Beer/Johnston, 11.59)

Collar A starts from rest at t = 0 and moves upward
with a constant acceleration of 9 cm/s?. Knowing
that collar B moves downward with a constant
velocity of 45.7 cm/s, determine:

(a) the time at which the velocity of block C is zero,
(b) the corresponding position of block C.

Ans. t=50/s xc-(xc), = 0.036 cm



"
Constrained Motion

Example 3: (Beer/Johnston, 11.48)

Block C starts from rest and moves down with a
constant acceleration. Knowing that after block A has
moved 0.5 m its velocity is 0.2 m/s, determine
(a)the accelerations of A and C, (b)the velocity and
the change in position of block B after 2 s.

Solution:

Block/cable A: XA+(XA-XB) = Const;
2VA-VB=0 => VA-=VB/2; aA=aB/2

Block/cable B: 2XB+XC = const
2VB+VC=0 => VC=-2VB;aC=-2aB
2 2V -
a) o, =2 (b __ (02 -0 = 004 ms’ a, =004 ms*
2[13 - (‘t.-!)n] (2)(=05)
op =-4a, ae =0.16 mis

b) ag=2a,=(2)(~0.04)=-0.08 m/s*
Avg =dagl =(—-0,08)(2)=-0.16 m's Avg =0.16 mfs

Axvg =15r1312 =%{—U_DR}[2)E =—0.16 m Avg =016 m 10
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Rectilinear Motion

H.W 1. The car traveling at a constant speed v, = 100 km/h on the
level portion of the road. When the 6-percent (tan8 = 6/100) inclineis
encountered, the driver does not change the throttle setting and
consequently the car decoration at the constant rate g sinf. Determine
the speed of the car (a) 10 seconds after passing point A and (b) when

s = 100m. | e
Selutien: o /’ﬁ,;%'
Uy = 100/3.6 = 27.8% mfs A

@a=-gsind = -7.8 sn Etah" 1{B¢1 = —=0.58¢ m}s2
(u)'uz'un-t-at = 27.8- O.SEE(H}) = 2.9 ms
(HUZ—_- fuf+2&(s-5a) = 27.8°+ 2(’:-—0.5‘33)(1:10)

V= 25.6 m|s




"
H.W 2:

1/5 The acceleration of a particle is given by a = 2t — 140,
where o 15 in meters per second squared and ! is in
seconds. Determine the velocity and displacement as
functions of time. The initial displacement at # = 0 is
33 = —4 m, and the initial velocity 131, = 3 m/s.

Solution: 4
a= g = <t-lo

v -
[ dv = [ (2t-10)at
Vo= 3 0

| = 3-lot+t* (m)s)

%% = 3-lot+t*

J-ScLs = J-t(s-lo £ t") dt

S, =4 o

S= -4+ 3t-5t%+ 37 (m)
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2/10 A ball is thrown vertically up with a velocity of 80
ft/sec ar the edge of a 200-ft cliff. Calculate the
height £ to which the ball rises and the total time ¢
after release for the ball to reach the bottom of the
cliff. Neglect air resistance and take the downward
acceleralion to be 32.2 M/sec”

Solution:

A y= Z/‘z,‘ f—-’-a?.‘l L YE é’at-éf-zz..?f'l
iﬂ Sfor y= -Zaa T,
-200 = 80T —/6. x’t

. /6.7 L% -Q0t - 200 = ©

s I
4 3
£ = i .t)/(’s'o) bl i /}(20(_{) = 6.80 sec /of ~/.83 5)

2(76.7) 70
. % .2 e =R

e

200

i
i
"
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2/44 The horizontal motion of the plunger and shaft is ar-
rested by the resistance of the attached disk which

moves through the oil bath. If the velocity of the |

plunger is v, in the position A wherex = 0 and § = (,
and if the deceleration iz proportional to v so that
a = —kuv, derive expressions for the velocity v and
position eoordinate r in terms of the time i Also ex-
press v in terms of x.

Solution: £=§§—'—=—ktf, ___;a/a,f
B -RC
/”Z"; /e.z.‘J v'-z/"@
o -kt ’ © _pt
:._.Z'.: = G
78 oy g_tﬂ L /a/K ue
(o]
_ U -kt
Z' -}EZ"‘C- ]
vadv = o ax
/ M:-kdz
v ¥ v
\/dyz'k ax, U=U-kx

J R

L b i
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1. Rectangular Coordinates (X-y)
2/B5 A projectile is launched with an initial speed of 200
m/s at an angle of 60° with respect to the horizontal.

Compaute the range R as measured up the incline,
Ans, B = 2970 m

200 mds #-

Solution: iv%.—. 200 o5 60° = 00 m/s

Uy, = R00 sin w° = (73.2 mfs

Te = ”f\i;‘jht time

4(:0(04‘0%{;;@ B: Rcog 2= |00ty ()

(1) : tg = O.00940R
\ ° 8 z
(2): RSMZO = \13.2(0.00?4-0&)- 2 (0.00?40&)
R= 27970 m




2/74 Water izsues from the nozzle at A, which is 5 ft

above the ground. Determine the coordinates of the m

point of impact of the stream if the initial water

_ap{aed 18 () vy = 45 fVsec and (b)) vy = 60 ft/sec. Tt E 30
Solution: se - y coordinates of the Fijure. E/';%

(C[) Ua = 45 f‘tISEQ.

% = Ko+ Vgt @ left wall | 30=0 +45cCos60° t
‘ t= 1333 sec

Y= Yo+ N A J:‘\gtl: y= 5+455fn60°0.33'oj—l6.|(:.333)2 = 28.3 ft (hi‘ts uall)

QJ) Yo = 60 Ft/sec fins. o (y) = (30')28.3')

R-ePca‘t Glove procedure 4o find Y= 40,9

when X = 30"1_ :sa_ Water clears left wall .

A= Ko tVUy,t @ VIght Wall * 50=0 + 60 cos6o’t
t= 166" sec

y 5. Ylelds - y= 4.9 ft @ t=16c7sec, <o

Water €lears th'\ld{h,f For Whovizowtal range

Frawm Y= Uhf‘\bgt -9ttt @ Y=0,45 5 ft,ue

tid  €=-0.09355 4 t=3325, Fam .
N= Xo + Vnot ! 4= 0+B0cssl0’(3.32) = 99.¢ ft




" J
2. Normal And Tangential Coordinate (n-t)

Example 2: Pendulum

Write the vector expression of the acceleration a of the
mass center G of the simple pendulum in both n-t and x-y
when 6 =060",0=2rad/s and 0 =2.45rad/s’

Solution: /

Pty 22 t_ z ~
qs=ré = 4(2.00) = /6,00 ff/sec X _"_—E _E %
: e 5= /6,00 Ff Im’.‘-"' e
2 =re = 4(%025) 7 £z 60° */H'
4= /6.00€, + fﬁ‘.mgi jffsml =4 ':'I
- Y
& 7
4y = —16.00 cos 60°- /6,10 5in60° = - 2/.9 T fsec” "-.H
o . e 2
.:g'y: 16.10 €05 60° — /6.00 Sir 60°= -5, 8/ #1/sec (3 "
. L 2 e
a:= - 24 ‘?_g -,5"',‘.!',‘-":; S/ see .:ﬂ;"'l:"-.,




Example 4. Baseball Player

i C g ... Vo= 100 ft/s
A baseball player releases aball with the initial conditions shown. /
Determine the radius of curvature of the trajectory: g 6=30
a) Just after release  b) Attheapex. c¢) Att=1sec.
For each case, compute the time rate of change of the speed v.
Solution: a& b) W= 168 Ffoce e
; i (@) an= 5 Qb‘;3° - r
= geosmes = 351 Ft
i =-q Sin 30° = —l6.| -F-l:!s:c?‘
g = 32 .2 thfsac"’- i
| DUk, (=) an= 3= F_
l = e -~ BE R
C) 3 ] BB
Uy = Vy,- gt : 0= 100sSin30°-32.2 Tup, tup =1.553 %
Se t= | sec IS before apex and t=2.5scc 13 after
NS R (O..\“t=| =
kH xr) J,_{__'x. 'U,x= (00 Cos 30° = B6. Q_ft
Uy = (oosin30°—32.2()=;'? %o /Sec_.
U= 1{’1).1 1-’1}3 = 88.4 ftfsec
8 = tan ”i = |L6l®
w®
an 3 Cos® = 32.2 cos l.ol® = 3.5 ft [sec™
f= - = gf? 248 Tt ?
O't = "3 SIn® = —32.2 sin 1.61°= —Q_a‘]-‘E-thsg:b
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3. Polar Coordinates (r-0)
Example 1: Robot Arm

The robot arm is elevating and extending simultaneously. At
a given instant, # = 30°, # = 10 deg/s constant, / = 0.5 m,

| = 0.2 m/s, and | = —0.3 m/s2. Compute the magnitude of
the velocity, v, and acceleration, a, of the gripped part P. In
addition, express Vv in terms of the unit vectors i and I

Solution: ¢ = 015 40.5 % i.25m o= 3o
r = 0.2 m|s ) = 0"14‘5%
- PR m|s* _ e=o

Y= Ve €r +Up€e = req+ réeg

a= AcCr +%e =(r-r6*)ec + (r8+276)€0
= 0,2e, + L25(0.1148)cy = 0.2 &, + 0.218e, 2 5 i

- _5- = Y 0 . 4 r R . : J
b A g il [-0.3 - 1.25(0.1745) ]gr +[1.25 (6) + 2(0.2)a1143]e,

= -0.338e, + 0.00i8€y m/s”

. . = “ia,t = 0.345 m|s?
intermsof i, : @ = Yafras Sl

er Cf = LC&SSO.f\j sin 30°

L €q = "Ls\n3o°—rqu,:30‘
U= 02[ ¢ 30° *‘J s30°]+ &2[8[1.33! +Jc3o]
= 0.064L t O 2??4 m s

Q= -0338L5 (:30“4!-4 530"] 1 0.05“[‘%530“1 :',I, t3ﬁ°]
= -0,328L - 0,|08; m/s?




" JE
Example 2: Hydraulic Cylinder 7

The piston of the hydraulic cylinder gives pin A a constant
velocity v = 1.5 m/s in the direction shown for an interval of

its motion. For themstant when ¢ = 60°, determiner, r, 0,
and ¢, where r = OA

Solution:

150 mm

i

11
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Example 3: Two links

Link AB rotates through a limited range of the angle /4, and

its end A causes the slotted link AC to rotate also. For the
instant represented where 7= 60" and 3= 0.6 radls '
constant, determine the corresponding values of r.r, 6, and / |
f /

Solution: e VAR <

For ﬁ=60°J e=c,o*’) ¥ = 150 mm

Up = |50Co.e) = 90 s
_ . oy Lo® e‘_ -0 c°:m°__ 3r_o_al_
Vo= € = UYasin 6G8® = 90 Sin 68° = 117 wmfs

g = @ = 150(0.(5)2 = 54 mm,s?'
Gp= F—r0° : -S54 Coght® = ¥ - 150(_—0.'3)1
; = -=|3,% mmls_i
Qg= ro 4 2¢6 3-—54-5;1\60" = |508 +2(1?.‘7l)(-0.3)
é = 0O




Relative Motion

Example 2: Two cars Y

Car A rounds a curve of 150-m radius at a constant speed \ ‘1\

of 54 km/h. At the instant represented, car B is moving at 81 A H
km/h but is slowing down at the rate of 3 m/s?. Determine o S -
the velocity and acceleration of car A as observed from car 150m H

B. [Extral Find the curvature of A as observed from B. ‘

Solution:

13
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Example 3: Two planes

Airplane A is flying horizontally with a constant speed of 200
km/h and is towing the glider B, which is gaining altitiude. If
the tow cable has a length r = 60 m and @ is increasing at
the constant rate of 5 degree per second, determine the
magnitudes of the velocity v and acceleration a of the glider

for the instant when @ = 15-.

Solution: | WH --

Yo=Y+ Ygy %, = 6= 60(-Z1r)= 524 m/s
. /
fre

U
it ——— e e O

& N e i,:/q ,!?5" _,,f-f-‘*““‘"’,"

Oz)5% -_A i !

ey ~% 3{5 %"556:”/5

2.15.24)2 + (55.6) + 2(524)55.¢6)cos 15° = 32649 (m/s)*

%
ag: 571 m/fs or UZ= S2/(5.6)= 206 hm/h

- - ‘2
a=a + 4y, Q=0 @y, =rd" = 50/;—;5,\,:0.457m/51

Thus Q&‘ t?a/A 0.957 mjs* From 3B fo A

14

|
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Constrained Motion
Exercise?:

The scaffold is being raised. Each winch drum has a @
diameter of 200 mm and turns at the rate of 40 rpm.

Determine the upward velocity of the scaffold.

Solution:

l.ength T 2(0,-4,)%-:0“1:.
l:.‘="f'05=3j."26.1 ot

L, =0= JI.,E-HI, )-1‘.'-'9',_

But v=-40, so

—rw = 3(-v)- 2v ) rw= 5y

y = r_g_ o. 1 (4u)ézw/so) - 0.0838 2
or U

= ¥3.%f mm }5 15




2/226 The scaffold of Prob. 2/225 is modified here by plac-
ing the power winches on the ground instead of on
the scaffold. Other conditions remain the same.
Calculate the upward veloeity v of the scaffold.

ICa
[Ca

Solution:

Lf'njth L= h+ 2("‘12)*'&»5’(.
L :T"rw:o’fZi."Zl',_ | t

. .!. -
But v=-4, J, | 2 }iz
. h

So —rw =-2v-2,

3 Iy
kength Lp= €, + 0, + Const. { @
st 4

Lz=o—= J? gl v W= L, L
10) (2W
FTW = 2y 420 ) us o T 0.1(4‘:3@ fo0)

V= 0.1047 mls or V= (047 1™

16




Chapter 3

Kinetics of Particles




m Introduction

Kinetics Is the study of the relations between
unbalanced force and the resulting changes in
motion, i.e. Fvsr, v, a.

m The three approaches
A. Direct Application or Force-Mass-Acceleration
B. Work and Energy
C. Impulse and Momentum
m Special Applications
Impact

2103-212 Dynamics, NAV, 2011 2



3-1 Force, Mass,

and Acceleration




m [he main equation is the Newton’s second law.

Newton's Second Law
YF =ma3

m Combine it with coordinate systems studied In
Chapter 2 to solve engineering problems

Suppose the block shown starts from rest at point A and
slides down the incline due to the force of gravity. Find the

speed of this block as a function of time, if # = 15°.
A

2103-212 Dynamics, NAV, 2011



Free Body Diagram

m A free-body diagram must be drawn to correctly
evaluating all forces involved in Newton’s second

law.

m Procedures
Clearly draw an isolated body
Define coordinate system and their positive directions

Add all the forces (contact and non-contact) acting on
that body

2103-212 Dynamics, NAV, 2011



Rectilinear vs Curvilinear

l Normal and Tangential Coordinates

EFX — max
XF, = 0 YF, = ma,
YF, = 0 LFt = ma

where a, = p2 =v2/p=vj3, a =V, and v = pj3

Rectangular Coordinates § Polar Coordinates

Eﬁx:mﬁx E.I'Er:mar
Eﬁ};:mg}f Eﬁgzmﬁg
where a, = — rt2 and ag = ré + 2i6

2103-212 Dynamics, NAV, 2011 6



Example 1: A log and a pulley

The 125-kg concrete block A is released from rest in the
position shown and pulls the 200-kg log up the 30° ramp. If
the coefficient of kinetic friction between the log and the
ramp is 0.5, determine the velocity of the block as it hits the
ground at B.

ANns: 4.62 m/s

2103-212 Dynamics, NAV, 2011
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3-1. Force, Mass, and Acceleration

Example 2: An accelerometer

The device shown is used as an accelerometer and consists
of a 100-g plunger A which deflects the spring as the
housing of the unit is given an upward acceleration a.

Specify the neccessary

TH spring stiffness k which will
permit the plunger to deflect
6 mm beyond the equilibrium
position and touch the
electical contact when the
steadily but slowly increasing
upward acceleration reaches
5g. Friction may be

neglected. Ans: 818 N/m

2103-212 Dynamics, NAV, 2011




Example 3: A Conveyor

Small objects are released from rest at A and slide down the
smooth circular surface of radius R to a conveyor B.
Determine the expression for the normal contact force N
between the guide and each object in terms of 4 and specify
the correct angular velocity w of the conveyor pulley of
radius r to prevent any sliding on the belt as the objects

transfer to the conveyor.
A R

| B
G S)m Ans: N = 3mgsin(8), w=V(2gR) /r

2103-212 Dynamics, NAV, 2011




Example 4: A Conical dish

The small object is placed on the inner surface of the
conical dish at the radius shown. If the coefficient of static
friction between the object and the conical surface is 0.30,
for what range of angular velocities w about the vertical axis
will the block remain on the dish without slipping? Assume
that speed changes are made slowly so that any angular
acceleration may be neglected.

L 0.2m ~>‘

Ans: 341 <w<7.21rad/s

2103-212 Dynamics, NAV, 2011 10



Example 5: A car on a curve

The 1500-kg car is traveling at 100 km/h on the straight
portion of the road, and then its speed is reduced uniformly
from A to C, at which point it comes to rest. Compute the
magnitude F of the total friction force exerted by the road on
the car (a) just before it passes point B, (b) just after it
passes point B, and (c) just before it stops at point C.

32 m Ans: 7.83 kN, 11.34 kN, 7.83 kN

2103-212 Dynamics, NAV, 2011
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3/6 Work and

Energy

BY: JAAFAR MOHAMMED HAMZAH

M.Sc. Mechanical Engineering



" A
3-6. Work and Energy

O O 0d0doOoo0Oo0f0dfdodf0d

. Work and Kinetic Energy

Definition of Work

Calculation of Work

Work of External Force

Work of Weight

Work of Linear Spring

Work and Curvilinear Motion
Principle of Work and Kinetic Energy
Advantage of Work-Energy Method
Power

Examples



1. Introduction

m Recall Newton’s second law and notice that this is an
instantaneous relationship.

= When we want to see changes in velocity or position due to
motion, we have to integrate Newton’s second law by using

appropriate kinematic equations.

= However we may integrate Newton’s second law directly and
avoid solving for acceleration first.

m In general there is two classes of problems

O Integration with respect to displacement — Work-Energy equation —
velocity between two positions of a particle or system’s
configurations.

O Integration with respect to time — Impulse-Momentum equation —
changes in velocity between two points in time.



" JEE
3-6. Work and Energy
2. Definition of Work

m Work done by force F during a
small displacement dr is
defined as

au = F - dr
or
@ dU = F ds cos(a)
== m Displacement in the direction
o \ Fﬂ

F N\ \ity,  of force, OR
\ : Z@___| m Force in the direction of ds;
\ -7 dscos g :

\ " _,.."% 05 |.e.,

bl Sy dU = Fids



"
3-6. Work and Energy
3. Calculation of Work

u In general, | LT m Make sure Fy is positive in x direction
U= ]F ar m Or, in n-t coordinate
m In x-y coordinate, we could U= fFr ds
sz(deerFyderdez)
B F¢is positive in +s direction.
Notes:

m U is positive when F; and ds are in the same direction
m Active force = force that does work.

m Reactive force = constraint force that does not do work.
m In Sl units, unit of work is N-m or Joule (J)



" JEE
3-6. Work and Energy

4. Work Constant External Force

m Consider the constant force ®m The work done on the body
P applied to the body as it by the force is:
moves from position 1 to 2.
L x lp Ui —LEF'EI‘—LEHPEDE{:H t (P sin eljl-dei

A3
= I Peosads =P cosalxy — x)) = PLcosa
x5

L

5. Work of Weight

m The work done due 1o

Weight is:
dr
g a Vi G ¥
U,s= { F-dr —j (—mgj)-(dxi + dyj)
41 ) 1 O 1 mg |
= —mg { d'*’ = —mgi¥ys — ¥1) }Il—l- : =
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3-6. Work and Energy
6. Work of Linear Spring

hix
'-_ _’-'hi'l'

Undeformed T F
it

position | F=kx
S —— m

Xy X

= Work done on the spring by
the body — use F

= Work done on the body by the
spring — use P =-F

m Thus work done on the body
by the springis - —» —» —

m Linear spring F = kx

where F is the force
acting on the spring to
compress/extend

Extension from xq to x»

U1_2 = - F dx
J X
X2
= - kx dx
X1
1 5 o
- kg )

____________________________
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3-6. Work and Energy

7. Work and Curvilinear Motion

m Movement from 1to 2
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3-6. Work and Energy
8. Work and Kinetic Energy

Kinetic Energy

1
T = —mv?@
2

m Recall: Uj_» = zm(v3 — v2)

m [ is the work done on a particle to accelerate it from
rest to the velocity v

m The unit of work is N-m
Work-Energy Equation

Up_p=To—T; =AT
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3-6. Work and Energy

8. Work and Kinetic Energy

LHtU_2=T;

m Positive work done on the body, increase kinetic energy.
m Negative work done on the body, reduce kinetic energy.

Advantage of Work-Energy Method

m No need to find acceleration first
m Get change in velocity directly from active force

m Can be applied to system of particle joined using
frictionless and non-deformable link

10
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3-6. Work and Energy

9. Power

m Power is defined as time rate of work.

=
m For a machine, power tells how much work it can do in
period of time.

11
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3-6. Work and Energy
Example 1: Crate and Chute

Calculate the velocity v of the 50 kg crate
when it reaches the bottom of the chute at B if .
it is gives an initial velocity of 4 m/s down the :
at A. The coefficient of kinetic friction is 0. 30. S

Solution
\ZFy = 0= R—-—mgcosl5=0; R=1(50)(9.81)cos15 = R=474N

O Fx = mgsin15 — uR = (50)(9.81)sin15 — (0.3)(474) = Fx = —-15.19N

Uy_p = ffF. dr = ff(Fx dx + Fydy) = Uj_z= f;lex dx = Fx (x, — x1)

Uy_g = (—15.19)(10) = —151.9 N.m
1
UA—B = TA — TB = Em(vzz — 1)12) = Vy, = \/UA_B/(l/Z)m + v12 ;0 Uy = 3.157’)1/5 ‘A

12
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3-6. Work and Energy
Example 2: Collar and Guide

Find the work done by the force F on the collar when it moves

from point A to any point.

Solution:

,E
U = f r-d(réy)
-

U = | —Fdr=—F(BC-AC)

37

r
L ]
- .
A
5 mm J

750 mm

13



Example 3: Spring Bumper

In the design of the spring bumper for a 1500 Kg car, it is desired
to bring the car to stop from a speed of 8 Km/h in a distance
equal to a 150 mm of spring deformation. Specify the required
stiffness K for each of the two springs behind the bumper.

Solution

Uy, =T, —Ty; Uy, = flz F.dr =2 (%sz)

1 1500 5\ 1
TZ =5mv2 =T(8X1—8) = 3703.7 N.m; T1=§mv1 =0
S \2
1 1mv22 1500(8 XE)
Kx? =-mv,? =k = 0.5 x = k =164.6 kN/m

2 T2 x2 ' (0.150)2

14
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3-6. Work and Energy
Example 4: Slider

The 0.2-kg slider moves freely along the fixed curved rod
from A to B in the vertical plane under the action of the
canstant 5-N tension in the cord. If the slider is released

from rest at A, calculate its velocity v as it reaches B.
B

150
‘ mim |
\25{] I

aN
i

|-f GO0 mm -

Ans: 4. 483 m/s

15
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3-6. Work and Energy

The ball is released from position A with a velocity of 3 m/s
and swings in a vertical plane. At the bottom position, the
cord strikes the fixed bar at B, and the ball continues to
swing in the dashed arc. Calculate the velocity v of the ball
as it passes position C.

08 m

Ans: 3.59 m/s

16



3/7 Potential

Energy (PE)
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" JEE
3-7. Potential Energy

= 2. Potential Energy

Gravitational Potential Energy (V)

O

O Elastic Potential Energy (1)

O Alternate form of Work-KE equation
O Examples
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3-7. Potential Energy
1. Potential Energy

m Gravitational PE
m FElastic PE

1.1 Gravitational PE (1)

Potential Energy

Vg = mgh

Reference
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3-7. Potential Energy
1.1 Gravitational PE (1)

\ m Change in potential when
\ i going fromh=hyto h= ho
2 _ ;
T =gy AVy = mg(hy — hy) = mgAh
\
N Ah m Start low finish high = go up
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3-7. Potential Energy
1.2 Elastic PE (V)

Elastic Potential Energy (of a linear spring)

X 1
u:/kmmzwf
. >

x 1s how much the spring 1s
compressed or extended from its
relaxed (original length)

m Change in potential from x; to x»

a%:%mﬁ—ﬁ)
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3-7. Potential Energy

2. Alternate form of Work-KE equation

m Consider a system

F

m Apply the work-energy
equation to the particle

m We have Uj_, = AT

m Recall that Vj is neg. of work
by mg

m and, V, is neg. of work on
the particle.

U‘|_2 - U-I;_E—.& Vg—& V,g — &T

Work-Energy Equation

U{_EZ&T—F&[VQ—F&VQ

m U , work of all external forces
other than gravitational
and spring forces.
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3-7. Potential Energy
2. Alternate form of Work-KE equation

m Convenient to setup system with particle and spring

m Think of AV, as energy In
the spring

m Make sure you clearly define
your system

m System with springs use:
Uz =AT + AV, + A, Ul_,=AT +AVy+ AV,



=
3-7. Potential Energy

2. Alternate form of Work-KE equation

Special Case (when there i1s no work from the external force other
than mg and spring).

Law of Conservation of Mechanical Energy

mU ,=0
m Define E as the total energy of the system

m When no external force other than mg and spring
AE =0

m The energy of the system is conserved!



0
3-7. Potential Energy
Example 1: Spring and Slider

The 0.9-kg collar is released from rest at A and slides freely
up the inclined rod, striking the stop at B with a velocity v.

The spring of stiffness k = 24N /m has an unstreched D
length of 375 mm. Calculate v. <

Solution:

A0 =+/0.452 + 0.752 = 0.875 m

=t
NS

_— -‘\"‘1."'1."1‘."1"1

500 mm

JUImim

-

X, =05-0375=0125m;  x; = 0.875—0.375=05m .
1 1
U'1_; =0 =AT + AV, + AV, = 5 m(v,? —v,2) + mgh + 5 k(x,2 —x,%2) =0

U'y;_, =0 (Law of Conservation of Mechanical Energy)
0.9(v,%2 — 0%) + 2x 0.9 x 9.81 x 0.25 + 24(0.1252 — 0.52) = 0
v,2 = —(2%0.9x9.81x0.25+ 24(0.1252 - 0.52))/0.9 = v, =1.16m/s
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3-7. Potential Energy
Example 2: Pulleys

If the system 1s released from rest, determine the speeds of both
masses after B has moved 1 m. Neglect friction and the masses of

pulleys.

Solution: n force  analysis revals Tt A will
meve  dbwn Ei B Wil meie  up.
Kinematies * SV = XV (speeds)

T+ V, = T ¥V, | datm (@ inita @ositon

T L 3 0\
Q40 = 'Ji'mn.”l)ﬂ + 2 mﬂ(z'\.lp,) + maa hﬁ

— Maqhn
0 =5 (AUt + 28 F U+ g(2.8)(1)
= 45 (1.8) (F (1) sin 20°)

= 3 —
g = 0616 m]s , VgT TV = 0.924 ms

10
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3-7. Potential Energy

Example 3: Spring and Slider

The 0.6-kg slider is released from rest at A and slides down
the smooth parabolic guide (which lies in a vertical plane)
under the influence of its own weight and of the spring of

constant 120 N/m. S o
e 05m . ﬂ_ﬁmﬂ etermine the speed o
/

the slider as it passes
point B and the

corresponding normal
force exerted on it by
the guide. The

unstretched length of
B the spring is 200 mm.

0.6 kg

120 Nim

0.25m ~ Paraholic

Ans: v =5.92 m/s; N = 841N

11
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3-7. Potential Energy

Example 4: Pole Vault

A 175 lb pole vaulter carrying a uniform 16 ft, 10 [b pole approaches
the jump with a velocity v and manages to barely clear the bar set at a
height of 18 ft. As he clears the bar, his velocity and that of the pole are
essentially zero. Calculate the minimum possible value of v required for
him to make the jump. Both the horizontal pole and the center of gravity
of the vaulter are 42 in. above the ground during the approach.

Solution: -U-r_'l =0 so T\ =Ta+ Vg,

] r’%
Take datum '13:3=o at qround level. 1}

715 t1o 2 —
T =%Z"3z72 Vv = R | Tp=0

b
Vy,= (1775 +10) = = 4z fn

%,

'*
|
|
|
|
1 [
|
|
I
l

18’ r%'
& T

B,

18

Vg, = 175 (18) + 10(%) = 3230 ft-Ib

Se 2.87v%+ 648 =0+ 3230

U= 300 ft[sec of RO.4 mi|hr 12




Chapter 3

Kinetics of Particles




3-3 Impulse and

Momentum




m 1. Linear Impulse/Momentum

ntroduction

Definitions
mpulse-Momentum Equation
Conservation of Linear Momentum

m 2. Angular Impulse/Momentum
Definitions
Rate of Change of Angular Momentum
Angular Impulse-Momentum Principle

Plane Motion Applications
Conservation of Angular Momentum
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m 3. Impact*
Direct Central Impact
Coefficient of Restitution
Energy Loss
Obligue Central Impact
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3-3. Impulse and Momentum
1.1 Introduction

'm Recall: We integrated £ F = ma w.r.t displacement to |
get the work-engergy equation.

T e il Changes in velocity (or kinetic energy) can be found
’ directly from work done on the body.

l Suitable when forces involved are functions of pﬂsitiun.é
'm Not suitable if forces are functions of time!

e o | equation

' mpulse- | . .

| Momentum i. Good when forces are functions of time. |
------------------------------- ! l Also good when forces are applied during very short g

period of time (impact problems)

2103-212 Dynamics, NAV, 2011 5



1.2 Definitions

Linear Momentum

G — miy «— ThisisaVECTOR

Newton’s second law £ F = m3v

Time Rate of Change of Linear Momentum

. dG
=

m Theresultant force on a particle equals to its time rate
of change of linear momentum.

m Unit of linear momentum (SI), kg-m/s or N-s
m In components form, e.g. TFx=Gx IF =G,

2103-212 Dynamics, NAV, 2011 6



1.3 Linear Impulse-Momentum Equation

m Integrate w.r.t. time £F = dG/dt

Impulse-Momentum Equation

f
“SEdt= G, — Gy = AG
1§

m Gy =linear momentum at time £

m Go = linear momentum at time b

O f Y F dt = (Total) linear impulse (from time ¢ to &)

m The total linear impulse on m equals the
corresponding change in linear momentum of m

2103-212 Dynamics, NAV, 2011



1.4 Conservation of Linear Momentum Equation

m When no resultant force

Conservation of Linear Momentum

AG=0

m For a system of particles,
m [f only interactive forces F and —F are involved
m Linear Momentum of the system will be conserved.

2103-212 Dynamics, NAV, 2011



3-3. Impulse and Momentum
Example 1: Sliding block

The 9-kg block is moving to the right with a velocity of 0.6
m/s on a horizontal surface when a force P is applied to it at
time t = 0. Calculate the velocity v of the block when

t = 0.4s. The kinetic coefficient of friction is ux = 0.3
P,N

vo=0.6 m's
—
72 | b
: —>— Okg
______ |
L | | 1 =0.3
| l
| |
0 | |
0 0.2 0.4

Ans: 1.823 m/s

2103-212 Dynamics, NAV, 2011
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3-3. Impulse and Momentum
Example 2: Sliding block

The 450-kg ram of a pile driver falls 1.4 m from rest and
strikes the top of a 240-kg pile embeded 0.9 m in the
ground. Upon impact the ram is seen to move with the pile

with no noticeable rebound.

Determine the velocity v of
the pile and ram immediately
after impact. Can you justify
using the principle of
conservation of momentum
even though the weights act
during the impact?

Ans: 3.42 m/s

2103-212 Dynamics, NAV, 2011 10



Example 3: Truck on a barge

An 8-Mg truck is resting on the deck of a barge which
displaces 240 Mg and is at rest in still water. If the truck
starts and drives toward the the bow at a speed relative to
the barge v,o) = 6 km/h, calculate the speed v of the barge.
The resistance to the motion of the barge through the water
IS negligible at low speeds.

V.. =6 km/h
I'E‘l_é__ SMg
200Mg ~ @] EE
—_—

Ans: 0.1935 m/s

2103-212 Dynamics, NAV, 2011 11



2. Angular Impulse and Momentum

2.1 Definitions

m Define: Moment of linear momentum = Angular

momentum
* 4smv W Recall: Linear
i Momentum
A\
Hyp=rxmv G =mv

HGZFXH?E?

2103-212 Dynamics, NAV, 2011 12



3-3. Impulse and Momentum
2.1 Definitions

In the plane A,

Hy = mvrsing

Hg = I'xmv

Sy Ho = mvrsind
~

View in plane A

2103-212 Dynamics, NAV, 2011

13



3-3. Impulse and Momentum
2.1 Components of Angular Momentum*

. i ] k
Ho=m| x y £
Vy Vy Vs
Ho = m(voy — vy2)i
M(VxZ — VzX)]

Hy = m(vzy—vyz), Hy = m(vZ—VzX), H;=m(vyXx—Vvyy)

2103-212 Dynamics, NAV, 2011 14



2.2 Rate of Change of Angular Momentum
For a particle with a resultant force ©F
m Moment about point O

YMp =7 x XF

m From £F = mv

<l-

EM@ZFXD’?

m Seethat Ho =7 x mv+F x mv

m Sincer=v,wehave Ho=r x mv

Rate of Change of Angular Momentum

Mo = Ho

2103-212 Dynamics, NAV, 2011

15



2.2 Rate of Change of Angular Momentum

Rate of Change of Angular Momentum

Mo = Ho

m The moment about the fixed point O of all forces
acting on m equals the time rate of change of
angular momentum of m about O

m In component form,

Mo, = Hox_. }:Mo}, = Ho},_. YMo, = Hoz

2103-212 Dynamics, NAV, 2011 16



2.3 Angular Impulse-Momentum Principle
m Recall: My = Hop
m Integrate w.r.t. to time

Angular Impulse-Momentum Principle

b . . _,
/ Mo dt = Flo, — o, = Ao
t

m The total angular impulse on m about the fixed
point O equals the correponding change in angular
momentum of mabout O

m In component form, we have

lo
/ SMo, dt = (Ho,)2 — (Ho,)
f

= M[(Vzy — VyZ)2 — (V2 — VyZ)4]

2103-212 Dynamics, NAV, 2011 17



3-3. Impulse and Momentum
2.4 Plane Motion Application

For plane motion

] m Moment about point
: O in z direction
e (+CCW)
|
| H@\ ts
: S / 5 M, d
o
| ; e f
]-2 I -
[ A T—w =Ha-Ho
I / \\
H02= I’J‘Il‘zdzl d”'ff m‘ifl
~— ]
| 1 m Or,
ry

o )y \ ’ ta .
Hp, = mvd, 1 Y Frsinddt
f

ZMy=2XZFrsing@
0 = .-'T:'ngg — MVy d1
2103-212 Dynamics, NAV, 2011 18



2.5 Conservation of Angular Momentum

m When XMy =0
Conservation of Angular Momentum

ﬂﬁg =0 or F.f'@ — F;'gz

m Momentum may be conserved only about some axis;

e.g.,
ZMx = — ﬁHx — 0

2103-212 Dynamics, NAV, 2011
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Example 4: Rotating spheres and rod

The small spheres, which have the masses and initial
velocities shown in the figure, strike and become attached
to the spiked ends of the rod, which is freely pivoted at O
and is initially at rest. Determine the angular velocity w of
the assembly after impact. Neglect the mass of the rod.

Ans: 5v/3L

2103-212 Dynamics, NAV, 2011 20



Example 5: Rotating spheres and rod

The 6-kg sphere and 4-kg block (shown in section) are
secured to the arm of negligible mass which rotates in the
vertical plane about a horizontal axis at O. The 2-kg plug is
release from rest at A and falls into the recess in the block
when the arm has reached the horizontal posiion.

2 kg An instant before

Dl 4 engagement, the arm has an
angular velocity w, = 2 rad/s.

womm  Determine the angular

velocity w of the arm

Imediately after the plug as

wedged itself in the block.

Ans: 0.172 rad/s CW

2103-212 Dynamics, NAV, 2011 21



Example 6: Rotating spheres and rod

The two sheres of equal mass m are able to slide along the
horizontal rotating rod. If they are initially latched in position
a distance r from the rotating axis with the assembly
rotating freely with an angular velocity wg, determine the
new angular velocity «w after the spheres are released and
finally assume positions at the ends of the rod at a radial
distance of 2r.

[ Also find the fraction n of the
== f’\" s " inital kinetic energy of the
r il *’T system which is lost. Neglect
; =7 the small mass of the rod
and shaft.

2103-212 Dynamics, NAV, 2011 22



3. Impact*

m Impact = collision between two bodies
m The impact force is large and acts over short time

3.1 Direct Central Impact

Vi & Y2 . .

0 Bt - m Conservation of Linear

impact ‘@@‘ Momentum of the system

e (two masses) in the

(b) Maximum . . .

deformation - — Im aCt dll’GCtIOﬂ—) AG :O

during irtnpact W p X

vy < vy .

(c) After impact —QQ— m1V1+ m2V2: mlvl + m2V2

2103-212 Dynamics, NAV, 2011 23



3.2 Coefficient of Restitution
m Coefficient of Restitution (e) tells how much the
bodies can recover from the impact
e= (Vy-vy)
(V1-Vy)
= |relative velocity of separation|
Irelative velocity of approach|

2103-212 Dynamics, NAV, 2011
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3.3 Energy Loss
m Usually, KE is lost into heat due to the impact

m Ife=1— NoKE is lost — elastic impact

mIfO<e<1-—- Some KE is lost — partially inelastic
Impact

m Ife =0 — KE loss is max — plastic or

completely/perfectly inelastic impact [bodies sticks
together after impact]

m Note: Linear momentum of the system is still conserved!

2103-212 Dynamics, NAV, 2011 25



3-3. Impulse and Momentum
3.4 Obligue Central Impact

m Initial and final velocities are not parallel.
m The impact forces are in the n-direction

2103-212 Dynamics, NAV, 2011 26



3.4 Obligue Central Impact

_______________________________________________________________________

'm Momentum of the system in
. the n-direction is conserved.

. T = 3 m Vv, + MV, = Myvy'+ myvy,)
\i L X@ ‘= Momentum of each body in
L f_ﬂ% ~ 3;’_ . ~the t-direction is conserved

- V1= Vap

14
O/{z : Q\Vi Vo = Vi,
‘m Coefficient of Restitution
(a) (v) © applies to n-direction

e= (Vp-vy)

2103-212 Dynamics, NAV, 2011 27



Chapter 5

Plane Kinematics of
Rigid Bodies

BY: JAAFAR MOHAMMED HAMZAH

M.Sc. Mechanical Engineering



" A
5. Plane Kinematics

m Introduction

= 5.1 Rotation

m 5.2 Absolute Motion

m 5.3 Relative Velocity

m 5.4 Relative Acceleration

m 5.5 Instantaneous Center of Zero Velocity
= 5.6 Motion Relative to Rotating Axes

JAAFAR MOHAMMED HAMZAH
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5. Plane Kinematics

1.1 Introduction

Particle Rigid Body
Size Small & Not importantin | Big & Important in
analysis analysis
Can be
Motion Translation only Translation or
Rotation or both
m Rigid body

= a body with negligible deformation

= distance between any two points in a rigid
body is constant

JAAFAR MOHAMMED HAMZAH




" JEE
5. Plane Kinematics
1.2 Motions of a Rigid Body

m 1. In space = three dimensions

m 2. In plane = two dimensions

— Translation
m Rectilinear

—1 Rotation

JAAFAR MOHAMMED HAMZAH



5. Plane Kinematics

1.3 Plane Motions of a Rigid Body (Type of Motion)

m [ranslation

m Rectilinear Translation

m Curviliear translation

Rocket test sled

X

e P
_ f A'\
/ -‘\

\9

‘\ f’

Parallel-link swinging plate

JAAFAR MOHAMMED HAMZAH



" JEE
5. Plane Kinematics

1.3 Plane Motions of a Rigid Body
m Rotation

m Fixed-axis rotation

Compound pendulum
m General Plane Motion = Translation + Rotation

Connecting rod in a
reciprocating engine

JAAFAR MOHAMMED HAMZAH



" JEE
5. Plane Kinematics
1.3 Plane Motions of a Rigid Body

What is the type of motion of these bodies?

m Wheel?, Car?, Link AB?

m Ferris wheel: the wheel?, the
car?

JAAFAR MOHAMMED HAMZAH



5-1 Rotation




" JEE
5-1 Rotation

m How to describe rotation of a rigid body?

m Angle between any line on

a IJ'UU,' ana a reference IIIIE

can be used to measure
rotation of the body.

.92:914—':?

m For arigid body, J =
constant.

m Angular velocity 6, = 0
m Angular acceleration #, = 64

m W as well as a is the same for every point

JAAFAR MOHAMMED HAMZAH
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5-1 Rotation

¥

w’ du..-"

@
dt
E
at
— o db

m For constant angular acceleration (a=constant), we

have

wp + ot
we 4 2a(6 — 6p)

1
90 + wol + Ef]{fz

JAAFAR MOHAMMED HAMZAH
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5-1 Rotation
1. Rotation about a Fixed Axis

m Any point in the body moves in
circular motion

m For Point A

Circular Motion

V = Tw
an = fw
dr = rla

2=Vv?/r=vw

m Note: v and a of other points are
different because of different r
(w and a are the same)

JAAFAR MOHAMMED HAMZAH
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" JEE
5-1 Rotation

1. Rotation about a Fixed Axis
Velocity

m [he equations can be rewritten
In a vector form (for plane
motion)

m Direction of w is given using the
right-hand rule.

Velocity (Pure Rotation)

| V=uXxT

12
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5-1 Rotation

1. Rotation about a Fixed Axis

Acceleration

m Direction of a is given using the
=0 right-hand rule.

Acceleration (Pure Ro-

tation)

an = wx(&xT)

—

i dg = «XxXT

13
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5-1 Rotation

Example 1: Rotating arm

The rotating arm starts from rest and acquires a e
rotational speed N = 600 rev/min in 2 seconds P%i : J
with constant angular acceleration. Find the time ¢ :f:j l
after starting before the acceleration vector of end P @D
makes an angle of 45° with the arm OP.
Solution
oz 899027) 1 - /677 rod/sec? )
60 2 p o——= n - 20
C}; —f‘ﬂtz= 61’!0??:) ’-60:7' 177./5ect lé\ I:l 6 o
Q=rw = 607 in./sec” for &5° a«n-id

Jo wt:= @Uﬁ/g =n::u'?'J W =560 rad/s
W=e) +xXl | 5.60=0+/07t, t= 0./784 sec

JAAFAR MOHAMMED HAMZAH
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5-1 Rotation
Example 2: V-belt pulleys

The two V-belt pulleys form an integral unit and rotate about the fixed axis at
0. At a certain instant, point A on the belt of smaller pulley has a velocity
v, = 1.5m/s, and point B on the belt of the larger pulley has an acceleration
ag = 45m/s? as shown. For this instant determine the magnitude of the
acceleration a. of point C and sketch the vector in your solution.

- = L2 . ag
w=u/r sors %9 Sa —
45 [ = N
A= & = 22 -//2,5 rad/s?
f/r - 0‘4 / [ ff / ‘\.\
2 2 “ \
_ () = rw= 036020 s ([ fon |
a= .5 m/s P = /44 m)s? o |' A t&@ SN -'| iy
Y PR = Ty H‘s‘.‘
- @,) = ro = ©36(112.) N N
w - = 40.5 m/s* k‘\x > S,
O 2z z = ——
@), ° a=Y (144)% (40.5) 199.6 /5
C ' \ ar
- 15

( C?c ) f JAAFAR MOHAMMED HAMZAH



5-1 Rotation

Example 3: L-shaped bar
The right-angle bar rotates clockwise with an angular | /J

velocity which is decreasing at the rate of 4 rad/s®. Write the
vector expression for the velocity and acceleration of point A
when w = 2 rad/s.

Solution. Using the right-hand rule gives
w = —2krad/s and o = +4K rad/s®
The velocity and acceleration of A become
[¥y=wXTr] v=—2Kx (041 +0.3j) =061 — 0.8 m/s Ans.
A, - e (@xr)] a = —2kx(06i— 0.8)) = —16i — 1.2j m/s
[a, = a X 1] a =4k x (0.4i + 0.3j) = —1.2i + 1.6j m/s*
[a=a, +a] a =—2.8i + 0.4j m/s? Ans.
The magnitudes of v and a are
=062+ 08 =1m/s and a=.28 +042= 283 m/s2
16
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5-1 Rotation
Example 4: Right-angle bar

The right-angle bar rotates about the z-axis through O with an angular
acceleration @ = 3rad/s? in the direction shown. Determine the velocity and

acceleration of point P when the angular velocity reaches the value w = 2 rad/s

Solution - wxr = 2kx[s.5i +0.2] + s.050k]
= —04L +3 m]s

Gp = &axC + @Wxluxg)
= -3k w[ﬁ.5£+a.zi . m.usug]

+ RK x LZEK(G-BE*“'ZJ*Q‘D&L‘)]
= -14L -23] wmfst

Nete That v could have beentaken as o, 5L+cssz
The majmh&ea of Tthe 9bae resulys art

Vp = LOT wls  ond
Thest roynitud Ched with
I A 61\ w{aa +o.-t (ﬂ.\ 1,077 mlst

ank {qt yap 2 "{@md‘ )1+ (I' ML)L

17
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5-1 Rotation

Example 5: Rectangular plate

The rectangular plate rotates clockwise about its fixed bearing at O. If edge BC
has a constant angular velocity of 6 rad/s, determine the vector and scalar
expressions for the velocity and acceleration of point A using the coordinates
given. [Check your solution using scalar relations]. A '

Ans. V, =1.68i—18jm/s

200 o 200 e
a, = —10.8{ — 10.08j m/s?
4 jm/s” \ | )
\]l \ ja-""\ -3 oy m‘[ﬂ.
\ \ g D= i
\ - -
\ ="V o S
B A~ B
i A0
o

H.W: Solve Problems: (5.9, 5.17 and 5.26). “Engineering Mechanics Dynamics,
6th edition, Meriam & Kraige”.

18
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5-2 Absolute Motion
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5.2 Absolute Motion

and accelerations.

Absolute motion of rigid
bodies is described by using
the geometric relations
which define the
configuration of the body
involved and then proceed to
take the time derivatives of
the defining the geometric

relations to obtain velocities

For Example:

— i

Linkages control
mechanism

\
\
-

L =200 mm _~~
il

= 1
B Postion variables x and
¥ arerelated as

e },2 _ 2
‘m Position x and angular
position #

Lcosh = x

JAAFAR MOHAMMED HAMZAH




"
5.2 Absolute Motion

m For simple mechanism, (absolute) positional relation is

m Position y and angular
position #

l1,

\
L & To-

~—— 450 mm ——

y/045 = tan ¢

B For complex mechanism, relative methods may be
easier (5/4-5/7).

m Relative metods will be used again in Mechanics of
Machinary.
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Steps to find velocity and acceleration relation between

two points (or a point and a line, or two points):

= Draw the diagram of the problem with all dimensions.

= Write the positional relations between the variables.

= This relation must hold the duration of motion.
(Not at just the current position).

= Differentiate it to obtain velocity and acceleration relation.
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5.2 Absolute Motion
Example 1: Link

Point A 1s given a constant acceleration a
to the right starting from rest with x
essentially zero. Determine the angular

velocity w of link AB in terms of x and a.

Solution B
X =2bcosé,
b b

i:-fééif;?ﬂj V= x C o o v

! X A
m=“.)dﬂ ClFs| 7] 7: 'U

“w 26 5/n& cw

or a=x const. .J;L!= 2ax 1r=V2ax
So w = V2ax B Ve dax

26\ /- cos® V46?- x?

JAAFAR MOHAMMED HAMZAH



" JEE
5.2 Absolute Motion
Example 2: Thin bar

Calculate the angular velocity w of the slender |
bar AB as a function of the distance x and the R

constant angular velocity w, of the drum. .
g y W, fﬁ} | .
] A ; L
Solution he x fome 0

0=Xtane +XB Sect®

WO = -L sindcesé

JAAFAR MOHAMMED HAMZAH



5.2 Absolute Motion
Example 3: Wheel

The wheel of radius r rolls without slipping, and its center O has a constant
velocity v,, to the right. Determine expressions for the magnitudes of the velocity
v and acceleration a of point 4 on the rim by differentiating

SN
its x- and y-coordinates. Represent your results graphically N \\
. 87\ 0 J
as vectors on your sketch and show that v is the vector sum K‘ i “)—* :
of two vectors, each of which has a magnitude v,. | N .
Solution | Coordinates of A are ' %) l
X=X,=rcos8 i=)ﬁa+r:9n'n6’=¢5(!+.s£n9)
y=r+ rsind g}=réima§=oacmd9

-.'.-":1,,4')5 2'*9-'2 = (‘Q%I-ﬁ.ﬁf'ﬂg)zﬂf cos38 '= 651.#2{'! +sind8) Yo v

. . 2
x,=0;c9c'p.sé7= %'(E)Ca.sg—-i{?_c‘ajﬁ
~ '

. 5 . sy . *,
4 =-—<'.£ Esin 5:—65(——")5;»9:——%-—5;”9
r r

- z z
a=1fi'z+:_’,1=%;HCOJJ'ﬁ-,Lg[,;*g -'-"..;:é Fonwara O . & II
___|
Il




®
5.2 Absolute Motion

Example 4: Telescoping link

The telescoping link i1s hinged at O, and its end A 1s
given a constant upward velocity of 200 mm/s by the

piston rod of the fixed hydraulic cylinder B. Calculate

the angular velocity 0 and the angular acceleration ] ,
of link OA for instant when y = 600mm. ” __Dé*i/ -

Solution y=0.5 fen & §
J:’=0.5'-$ECTSJS" yY=0 =J'&:5'(’r‘anﬁs=ce)éa
+o0.55ec® &
o = zﬁ/sec’ﬁ'

S =-2tm88°

. a.-ﬁ
For y=0.6m, fon = E_:=f'2, 8=s02°

Sec &= /562
Jofar'jr: 0.2 mis g - M-a.;g ¢ racd
’ (1.562)% ~ ’ /s

6 = -2(12)0.1639) % -0.0645 rod/s?
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5.2 Absolute Motion

Example 5: Car hoist

Derive an expression for the upward velocity v
of the car hoist in terms of 8. The piston rod of

the hydraulic cylinder is extending at the rate S.

Solution

y= 26 5/n @
U':j}: 265;1‘::‘.‘.’5 e

=6zfﬁ2-?6£ cos @ y
256 = 0+0+ 2bLESING

$s
bL sin8 _

5SS cose=p Vb LE-26Lcos0
bl sinb ! Fan®

© =

Jo =26
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5.2 Absolute Motion

Example 6: Plunger and roller

Determine the acceleration of the shaft B for 8 = 60° if
the crank OA has an angular acceleration 6 = 8 rad /s>

and an angular velocity 8 = 4 rad/s at this position. The

spring maintains contact between the roller and the
surface of the plunger.

Solution

Y= 20+ Eﬂsmﬁ‘ y 808 cos®
VE §08 c0s 6 - 5’09&:?&

rad
For B:=60° 5 4'5—J‘9 35,;

JAAFAR MOHAMMED HAMZAH
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5.2 Absolute Motion
Example 7: Link

The rod OB slides through the collar pivoted to the link at A.
If CA has an angular velocity w = 3 rad /s for an interval of
motion, calculate the angular velocity of OB when 6 = 45°.

Solution

0.2 5in @

ﬁ?ﬂ =
? 0.4-0.2cos8 '

fanp (2-co050) = 5/n 8

/.é;;ec}g (2-co58) + rar/3 (@ 5in8)= 6cosd

. €058 - 5@ Ftanl 2
= &8 Ccos
A Z2-co58 P
- 2cos@ -1 émsiﬂ
(2-¢os56)?
r o r'_'a-d _ Lo _ - ffﬁ - -}
For W=-6=3 5 ,6= 457 g= tan e 287
] z _f I
Vi :.’2 /ﬁr E (-3) 08 281%: - 0,512 rad/s
= 2

Jo W = 0.572 redfs Ccw

CA = 200 mm

JAAFAR MOHAMMED HAMZAH
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§
5.2 Absolute Motion
Example 8: Link

Link OA revolves counterclockwise with an
angular velocity of 3rad/s. Link AB slides
through piloted collar at C. Determine the

angular velocity w of AB when 8 = 40°.

w4 = r&cosl/é+p)

Lcos o - rcos (3 4/5) = w = 0.825 rad/sec

H.W: Solve Problems: (5.39, and 5.58). “Engineering Mechanics Dynamics, 6th

edition, Meriam & Kraige”.

JAAFAR MOHAMMED HAMZAH
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" JEE
5.3 Relative Velocity

1. Introduction
B We will apply concepts on relative motion from

Kinematics of a particle to a rigid body.

where A and B are two points on the rigid body.
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5.3 Relative Velocity

2. Relative Velocity due to Rotation
m Consider point A and B on a rigid body in a general
plane motion,

;arw m Need v VAJE to apply

A" Va=Vg+ Vamp

Arp m Recall that in

Va = Vg + FA,’B the
observer at B must be
translating.

m X-y represents the
reference frame of the
observer at B
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" JEE
5.3 Relative Velocity

2. Relative Velocity due to Rotation

m Since the length AB is
constant, B will see A moving
in a circular arc.

m The displacement Af is
relative to x-y

| VA!B = W'ABE

Relative Velocity

Va/B = CAB X IB_2

JAAFAR MOHAMMED HAMZAH
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5.3 Relative Velocity

3. Choice of Observer and their w

Motion relative to A

Va/B = WAB % IB—A VB/a = Opa % Ta_p

Notice that either line from A to B or from B to A can be
used to define angular velocity and acceleration of the body;
l.e., Jdag = @ga. And, both are CCW.

JAAFAR MOHAMMED HAMZAH
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5.3 Relative Velocity

4. Visualization of Relative Velocity
m Actual motion = Translation + Rotation

! Path

Path J,r of A
of B /

m Pick any point B, the body translate with velocity vg
m And rotate about B with ang. velocity &
m For any point A, V4 = Vg + @ x I'g_.A
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5.3 Relative Velocity
Example 1: Link and Slot

End A of the link has the veloaty shown at the In-
stant depicted. End B is confined to move in the slot.
For this instant calculate the velocity of B and the

angular velocity of AF.

_ y
Solution 7 P AN N

- ] 1
Lo | 307N\ 2o
2 B %
SR BS0° S 30° s
2 SmSo’ 2
_:if}-zﬂ-.ﬂ_“ = J.oé s AZ<E i

- - ‘ & St .j-;_,‘.-'u
FEA Us cos 8O ¢ U, oS ) |
= 3,06 5394 2 s bo = 3.94 ™m/s

= s -
v, g - 394 /s - ceus
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5.3 Relative Velocity

Example 2: Square

The uniform square plate moves in the x-y plane and
has a clockwise anpular velocity. At the instant rep-
resented, point A has a velocity of 2 m/s to the right,
and the velocity of C relative to a nonrotating ob-
server at B has the magnitude of 1.2 m/s. Determine
the vector expressions for the angular velocity of the
plate and the velocity of its center (r.

Solution

'z,g/a.- (8 co e:ur:aﬁi =3 rad/s (W
w=~-3k rad/s
(7% Lt OxX

=2¢ ~3kx(-02;%0.2)

]

7
[

+

Fa O l’ . -2
6y + 0.6 ¢

1l:~.._

S

A 2.6L + 0.6 mfs

C B
G- 0.4m
y
|
|
i D .4 m A

C f 8
N
b~ N
G . 0. & m
yl Y A
| e .
[__‘?_ 0.4 m f,.«‘
Yp=2t ™/
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5.3 Relative Velocity
Example 3: Crank

Crank CB oscillates about C through a limited arc, causing crank OA to oscillate
about 0. When the linkage passes the position shown with CB horizontal and OA
vertical, the angular velocity of CB is 2 rad /s counterclockwise. For this instant,
determine the angular velocities of OA and AB.

Solution I (Wector). The relative-velocily equation v, = vg + v, g is rewritten as

Wnhs Xy = Wop X ¥y T Win X¥yn

where

MDA = (UUAk MCB = 2k rﬁdﬁ"s WAB = MA.Bk

r, = 100j mm rg = —75i mm ryg = —175i + 50j mm

Substitution gives
wo. K % 100§ = 2k X (—=750) + w, gk X (=175 + 50j)
—100wpd = —150j — 175w 5] — 50w 5l
Matching coefficients of the respective i- and j-terms gives
—100wg, + 50w,p = 0 25(6 + Tw,p) =0
then; w,p = —6/7 rad/s and wgy = —3/7 rad/s Ans.

JAAFAR MOHAMMED HAMZAH



5.3 Relative Velocity

Solution Il (Scalar-Geometric). Sclution by the scalar geometry of the vector
triangle is particularly simple here since v, and vy are at right angles for this
special position of the linkages. First, we compute vg, which is

[v = re] vp = 0.075(2) = 0.150 m/s

and represent it in its correct direction as shown. The vector v, must be per-
pendicular to AB, and the angle # between v,z and v; is also the angle made by
AB with the horizontal direction. This angle is given by

100—-50 2
tan § = =
250—-7 7
M s lecstmmindnl srnndmw wr . ansemlotas dtlan b el o Feee serle s ale P T
L I1E LIV 1Ll VO L ‘A LUl o LI L I.ﬂ.l.ls.l: LUl WIELILIL WY L1Aave
vy = vglcos 6 = 0.150/cos #
vy = vgtan 6 = 0.150(2/7) = 0.30/7 m/s
MThn armmma]lam ralaaiting hoaasems o
L IIC allpullal vOIULILICS POuUuULIileT

_ Yar _ 0150 cos #

Lo = vir] “AB = “ 2 cos @ 0.250 — 0.075
= 6/7 rad/s CW Ans.
- A R
[w = v/r] Woa % o 0.100 3/7 rad/s CW Ans,

ty = 150 mm/s UA/B

“\\_\m

JAAFAR MOHAMMED HAMZAH
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5.3 Relative Velocity

Example 4: Triangle
At the imstant represented the triangular plate ABD
has a clockwise angular velceity of 8 rad/sec. For this

instant determine the angular velocity wy- of hnk BC.

Solution ., -3 o
hg~ 3 rad/sec L w ok o e e} o B
II . 5 -8 =A -‘Ef;a A Bc 5-1:..

Lj'%z AB L, .

5(3)=z |5 in./Séec

= L05 =
5 5-.

Ug= Uy, cosd

= 15(3/5) = @sn fsoc
Wgc= ?/3 =3 rod/sec CW

11
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5.3 Relative Velocity

Example 5: Linkages

In the four-bar linkage shown, control link OA has a

counterclockwise angular veloecity wy = 10 rad/s dur-
ing a short interval of motion. When link CB passes

the vertical position shown, point A has coordinates
x = —60 mm and y = 80 mm. By means of vector al-
gebra determine the angular velocities of AB and BC.

Solution %= Y5 * Y,
Ya= %aoX Do = /o4 x (<0.06¢ + 0.08)) _

=W ' :
Y5 ?;ac"‘.’?sc s, kX018 ~0.180) ¢
4" Dan* Las
=¢U,qg£x(— a.z-sz_f:.'—a.g*)

Thus, el 544"}43;}""0'“%5.97 /s

"O.6/~0.8L = ~0./8U, L ~0.24), ) +0./W0gt

Loaare Lj' Aerms g ser d"’:‘i&: 0.6
0. 24

“ung= 25k rad/s

= 2.5 raad/s
W 593k rad/s

~0.65-0.80 m/s

@)y = CO= 10 rad)s

12
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5.3 Relative Velocity

Example 6: Telescoping Link

Determine the angular velocity w of the telescoping
link AB at the instant represented. The angular ve-

locity of each of the driving hinks 15 shown. 10"

Solution

U= 3(0.5)s 48 /n.[sec . %

5" A
ﬁ ,l L;‘:f: ;,5(%).-.;.:? in/sec
[%4,%. lo”

i e Ya, U= 4(0.5)= 2.0in fsec

LE= .?.0[’5) 2/, 2 . [sec

i
Va, + Uz
PO R R %Euw: _j_i‘__r_a;_
A8
. 42+
w = L2. 024 radf,,
/0
Cw

13
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5.3 Relative Velocity

*

Example 7: Wheel

The wheel of radius r = 300 mm rolls to the right without
slipping and has an angular velocity & = 10 rad/s. Calculate
the velocity of point A on the wheel for the instant
represented.

Page (359) “Engineering Mechanics Dynamics, 6th edition, Meriam & Kraige”.

14
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5.3 Relative Velocity

Example 8: Reciprocating engine *

The common configuration of a reciprocating engine is that of the shder-
crank mechanism shown. If the crank OB has a clockwise rotational speed of
1500 rev/min, determine for the position where # = 60° the velocity of the piston
A, the velocity of point G on the connecting rod, and the angular velocity of the

connecting rod.

Page (361) “Engineering Mechanics Dynamics, 6th edition, Meriam & Kraige”.

15
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5.3 Relative Velocity
Example 9: Cylinder

The f:j,'lindcr shown in Fig_ 16=15a rolls without Hlipping on Lhe surface

of a conveyor belt which is moving at 2 fi/s. Determine the velocity of SR ‘
point A_The cylinder has a cdlockwise anpular velocity @ = 15 rad/s at ¢
the instant shown.

Ans.
vy = V(@300 + (7.50) = 12.1 fi)s Ans.
H = r:m"ﬂ — 2R3 A A s
950 o

H.W: Solve Problems: (5.75°™ or 5.81°" and 5.81°" or 5.87°™). “Engineering
Mechanics Dynamics, 6th edition, Meriam & Kraige”.

16
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"
5.3 Relative Acceleration

1. Introduction
B \We will apply concepts on relative motion from

kKinematics of a particle to a rigid body.

__________________________________

where A and B are two points on the rigid body.
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5.3 Relative Acceleration

2. Relative Acceleration due to Rotation

of B

m Acceleration of A equals to acc. of B plus the acc. of A

relative to B o
aap = ag+aamp

m A general motion can be thought of a two separate motion:

1 Translating with acc. of point B
1 Rotation of point A about point B

JAAFARMOHAMMEDHAMZAH



5.3 Relative Acceleration

of A

/ Path
of B

m Relative equation

ap = ap-+aa/m

m The relative term @4/ = (da/8)n + (34/8)t

Rel. Acc. (Tran. Axis) Rel. Acc. (Tran. Axis)

(@a7B)n = V4 ,p/r = rw? (3a/8)n = ©ag % (&aB % Fp—p)

(aa/B)t = Vasg = ra (8a/B)t = Gap x Tp_a

JAAFARMOHAMMEDHAMZAH



5.3 Relative Acceleration
Example 1: Rolling Wheel

The wheel of radius r rolls to the left without slipping and, at
the instant considered, the center O has a velocity vp and

an acceleration dp to the left. Determine the acceleration of <— 4—%

points A and C on the wheel for the instant considered.
Solution

From our previous analysis of Sample Problem we know that
the angular velocity and angular acceleration of the wheel are

w = vglr and o = agir
The acceleration of A is written in terms of the given acceleration of 0. Thus,
ay = ag + ayn = ag + taygy, T laye)

The relative-acceleration terms are viewed as though O were fixed, and for this
relative circular motion they have the magnitudes

U

2
= = Sl
a0l = Fp™ = "ﬂ( r )

Qg
(@qo)e = roa =ro | —=

JAAFARMOHAMMEDHAMZAH




"
5.3 Relative Acceleration

and the directions shown.

Adding the vectors head-to-tail gives a4 as shown. In a numerical problem,
we may obtain the combination algebraically or graphically. The algebraic ex-
pression for the magnitude of a4 is found from the square root of the sum of the

squares of i1ts components. If we use - and t-directions, we have 0
ay = Jag,k + (an)? ¥
a 4 i {ﬂﬂfﬂ)u =ro
= Jlag cos 0 + (ayp),1* + lagsin @ + (ay0)]* e -
# a. : C =
= J(ra cos § + rgw*)* + (rasin 6 + ree)? Ans. @croh =re
o — (@ 0) =Ta
The direction of a, ean be computed if desired. et -
The acceleration of the instantaneous center C of zero velocity, considered a
point an the wheel, is obtained from the expression @ /), =T 0 O = o
ac = g + acp T =T
where the components of the relative-acceleration term are (eco), = ro’ di-
rected from C to O and (acp); = ra directed to the right because of the counter-
clockwise angular acceleration of line CO about O. The terms are added together
in the lower diagram and it is seen that
ag = rw’ Ans.
6
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5.3 Relative Acceleration
Example 2: Crank '

Crank CB has a constant counterclockwise angular velocity
of 2 rad/s in the position shown during a short interval of its 100 mm
motion. Determine the angular acceleration of links AB and
OA for this position.

Solution
We first solve for the velocities which were obtained in Sample
Problem They are

wyp = —6/7 rad/s and wos = — 37 rad/s

where the counterclockwise direction (+ k-direction) is taken as positive. The ac-

celeration equation is
o= F I'ﬂﬂ:'B}ﬂ + {a.rl-’ﬁ'j{
where, from Eqgs. 5/3 and 5/9a, we may write
A, =apy XTy T 05, Xl XT,)
= agyk % 100§ + (—3k) x (— 7k X 100) = —100p,i — 100(3)j mms?

=0+ 2k x (2K % [—75i]) = 300i mm/s?

JAAFARMOHAMMEDHAMZAH
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5.3 Relative Acceleration

(B 5), =@z X (@5 X Ty
= —0k X [(~5K) X (—175i + 50j)]
= (5(1751 — 50j) mm/s>
@ypl =aup X Yyp
= o,k X (—175i + 50§)
= —50a4pl — 1750 4pj mm/s?

We now substitute these results into the relative-acceleration equation and
equate separately the coefficients of the i-terms and the coefficients of the
Jj-terms to give

—100a,, = 429 — 50a 5
18.37 = —36.7 — 176,y
The solutions are
ey = —0.1050 rad/s* and @n, = —4.34 rad/s? Ans.

Since the unit vector K points out from the paper in the positive z-direction, we
see that the angular accelerations of AB and OA are both clockwise (negative).

It is recommended that the student sketch each of the acceleration vectors
in its proper geometric relationship according to the relative-acceleration equa-
tion to help clarify the meaning of the solution.



5.3 Relative Acceleration

Example 3: )
For the Linkage, if OA has a constant CCW 260 V;
angular velocity w, = 10 rad/s, calculate the a of ///,,

130 mm

link AB for the position where the coordinates of A
are x = 60 mm and y = 80 mm. Link BC is vertical
for this position. Solve by using vector algebra.
wgc = 5.83k rad/s and wyp = 2.5k rad/s.

Solution: %= 2,7 gy = Zpw,x (WX r,) +A, X 1y,

=5?35x(5.83irxo.;8’!') - oy b x O.ra’g' m/s® = —6-/2@'-0,&?«&:_4’ m/s?

Z,= QX (X 1ay,) = 10k % (10kx[-0.06¢ +0.08/])= 6£-8/ m/s* (x :0) A
- ” p , .

{Q%)n"‘ Q%ax(f_UABK_FBA):2..,5?[’)‘(?.5&:’([0,24_9 + 0. IJ J): - [‘5-5‘ ‘0-625'”?' m/sz

(“"'5/,'4),&= K, gk x(0.29¢ + 0. f:r'J: -a.gaﬂa_é +o.240(, . |

Swbshiteie 152 acce/, &9iarreie P Cgirare coefficients

¥ se7 -0, 18X, = 6 -5 -0 /0 i So/. /5

Xag = 10.92 k rad/s? '(2655 =-/9.21 k rwa’/.s§
’ JAAFARMOHAMMEDHAMZAH
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5.3 Relative Acceleration
Example 4

For a short interval of motion, link OA has a con-

stant angular velocity @ = 4 rad/s. Determine the
angular scceleration w,z of link AB for the in-

stant when OA is parallel to the horizontal axis
through B.

Solution (cots)* + 120" = zoo*

s = |os mm

g = ©.00 (4)10.24- ms
Lo Vet 0,24
wﬁB- W(:.. - 0.160 - I 5 rﬂ&ls

From the c\iaafom

(Q‘B\ﬂ\t 0 4‘5) Q.338 <= 81’

___ 0.338
(aa,ﬂjt S5 = 1688 rad)s” cow

JAAFARMOHAMMEDHAMZAH
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5.3 Relative Acceleration

Example 5:
At the instant represented ¢ = 45° and the triangu- gt
lar plate ABC has a counterclockwise angular ve-
locity of 20 rad/s and a clockwise angular
acceleration of 100 rad/s”. Determine the magni-
tudes of the corresponding velocity v and accelera-

tion a of the piston rod of the hydraulic evlinder
attached to C.

G400 mm

Solution

a=4-= Gg+(q..,), + (Gc /g )t

(“eyz),° CBw®: 0.4(20)* = 160 m/s*

(Acsg), = CBoX = 0.4 (100) = 40 m/s*

From dlia Grarn

a=/éofrz - 90/V2
= 84.9 m/s? =




"
5.3 Relative Acceleration

Example 6:

Plane motion of the triangular plate ABC is con-
trolled by erank OA and link DB. For the instant
represented, when OA and DB are vertical, OA has
a clockwise angular velocity of 8 rad/s and a coun-
terclockwise angular acceleration of 10 rad/s%. De-
termine the angular acceleration of DB for this

instant.
Ans. apg = 1.234 rad/s* CCW
Hint:
T2 S

o =4 =a, +n +4 “+4
_aq "'8!- '_A" -Af -%” -Mf

—0.135 j- 0240, [ =-0.54[ - 0.60 + 0 -0.29%,g | ~O.18,q (

JAAFARMOHAMMEDHAMZAH



5-5 Instantaneous Center

of Zero Velocity

BY JAAFARMOHAMMEDHAMCZAH

MSc Mechani cal Engi neeri ng



5.51CZV

1. Introduction
B For a moving body, at each instant of time, there is
always a point with zero velocity.

B This point is called the Instantaneous Center of Zero
Velocity or ICZV.

Examples:
A rotating link A train on a circular track
B
A

Iczv

JAAFARMOHAMMEDHAMZAH



1. Introduction

NOTES:

ICZV Is a point on the body that, at that instant, has zero
velocity.

ICZV may be on the body or anywhere else
ICZV may be located at infinity.

ICZV will usually not be the same point on the body all the
time

ICZV can be used to calculate velocity only.
The body will appear to rotate about ICZV.

Acceleration of the ICZV will not be zero.

JAAFARMOHAMMEDHAMZAH
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5.51CZV
2. Locating ICZV

m 1. Fixed Axis Rotation

* m m m B E

Pure rotation, C = ICZV
l?A = FC + GA;‘C

Ve =0

FA{C = @ X oA

Va=@ X oA

See that v4 must be | to
CA

See that v4 must be
propoticnal to its
distance from C

JAAFARMOHAMME DHAMZAH
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2. Locating ICZV

m 1. Fixed Axis Rotation

m Suppose, V4 and Vg are known

m Draw aline L to V4 and vg
passing through A and B

m The intersection is ICZV.

m At this instant, the body is
rotating around the ICZV.

m In general, ac # 0

mC=ICZV
W Vy= Vo +Vasc
m Vc=0

o VA/C =@ K T .
* Va=d xTc_n
% See that V4 must be | to CA

* See that v4 must be

propotional to its distance from
C

JAAFARMOHAMME DHAMZAH



" JE
5.51CZV
2. Locating ICZV

m 1. Fixed Axis Rotation

m If V4 = vg then ICZV is at o (i.e., body in translation).
JAAFARMOHAMME DHAMZAH
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5.51CzZV

Example 1: Find the ICZV's 1
150 200 :
.4 min mm
150 \U‘ V2 mm -:
mm 200 mm
—5 )

d)

JAAFARMOHAMME DHAMZAH
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Example 2:

For the instant represented, when crank OA passes
the horizontal position, determine the velocity of the

center (r of link AB by the method of this article.

Solution v

JAAFARMOHAMME DHAMZAH
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5.51CZV

Example 3:

Maotion of tha har is controlled by the constranerd

paths of A and B. If the angular velocity of the bar
1 2 rad/s counterclockwise as the position # = 45°
is passed, determine the speeds of points A and P.

Solution

CP =V (Ixcos 45°) % + (0.5 sin 45°)2 = O. T/ w

P U= EPew =0.791 (2) =_L58/ m/s

=CAw = 0.5 3m45°(2)
Z{q' =0.707m/s

JAAFARMOHAMME DHAMZAH
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5.51CZV

Example 4:

Solution

In the design of this mechanism, upward motion of
the plunger G controls the motion of a control rod
attached at A. Point B of link AH ic confined to
move with the shding collar on the fixed vertical
shaft ED. If G has a velocity v; = 2 m/s for a short

C= (nstantaneous center

Uz cas#.f’--og =2Zmf

of zere velocity of ABH

interval, determine the velocity of A for the posi- U
tion 6 = 45°. F
S5o ¢ =2,83 m/s
- 240
1" 5orzwn 2 43
= 2.2 m/5 Ny
Law of sines 240 0 p=
,an/B ..(‘rn 45’ N -
55 200 Y=/80°~(58.1°+45°) = 76.9
276
Sin 76.9" Sin45°’ BD =276 mm gpt_ea _,’,5.—3901-.»1
CA = 276"+ 160"~ 2(276)060) cos(30°158.1 ), CA =420 rom

CH = CD - 240 =390 -240= /49, 7 mm

420

49,7 —595:»1/3

2/2

G /AC =, [CH, o

10
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Example5: Find the ICZV's:

11
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5.51CZV

Example6:

The cyhnder shown in Fig. 16-23a rolls without shpping between the
two moving plates £ and £, Determine the angular velocity of the
cylinder and the velacity of 11s center C.

D200 02AA |

F A ve =(0.25 m/s

o12sm1¢

i‘D = UJ’ I'n..f!i D

B
DOV OOD

Ans. v, =0.0750m/s «

H.W: Solve Problems in "Engineering Mechanics Dynamics, Meriam & Karaige",
(5.119&5.121), 6" Edition; or  (5.81&5.105), 5" Edition.

12
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Chapter 6 Plane

Kinetics of Rigid Bodies
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6.1 Force, Mass, and Acceleration

1. Introduction
2. Force Equation
3. Moment Equation (about G)
m 4. Kinetic Diagram
5. Moment Equation about Other Point
6. Translation
O Rectilinear
O Curvilinear
m /. Fixed Axis Rotation
m 8. General Plane Motion

JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

1. Introduction

m A free body diagram is required.
m Three Newton’s laws of Motion are used.
m T[he second law has two equations,

O force equation

O moment equation

both applies simultaneously.

Proofs are in Chapter 4: Systems of Particles.

____________________________________

____________________________________

JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

2. Force Equation

Newton's Second Law (Rigid Body)

YF=m3; ™ F = forces acting on the rigid body,
m m = mass of the body,

m d; = acceleration of the center of mass, G

3. Moment Equation (about G)

The Moment Equation (Rigid Body)

Y Mg = lgax  m Mg = moment (of external force) about G
m Hg = Angular momentum of the system about G

m Hence, for plane motion H

? -

I
=

G ff;w‘

m Then, (since /g is a constant) He

JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

4. Kinetic Diagram

m A Kinetic Diagram is strongly recommended.

F;

Free-Body Diagram Kinetic Diagram

JAAFARMOHAMMEDHAMZAH



"
6.1 Force, Mass, and Acceleration

9. Moment Equation about Other Point
Alternative Moment Equation

ZMP = )'(;f_if + ﬁ(; X mEG
m Mp = moment about some point P

m o = vector from P to the mass center G

Free-Body Diagram Kinetic Diagram

JAAFARMOHAMMEDHAMZAH



6.1 Force, Mass, and Acceleration

6.1 Rectilinear Translation
Pathof G
”

Free-Body Diagram Kinetic Diagram

(a) Rectilinear Translation

(=0, @=0)

mYXF = mag, EMg =0

JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

6.2 Curvilinear Translation

Free-Body Diagram Kinetic Diagram

(b) Curvilinear Translation
(=0, ®=0)

mXF = mag, TMg =0

JAAFARMOHAMMEDHAMZAH



6.1 Force, Mass, and Acceleration

Example 1:

The uniform 30-kg bar OB is secured in the vertical
position to the accelerating frame by the hinge at O
and the roller at A. If the horizontal acceleration of
the frame is @ = 20 m/s”, compute the force F on the
roller and the horizontal component of the force sup-

2 ls-]

3000 mm

ported by the pin at O.
Solution:
1 #Ma=30/20)= 600 N
2m 3 .
ol | me 2N, = ma &,
e j;“*" £ (1)=600(2)
m
£ _l1|3004.87) N
A s = J200 A
I A
'(-—O o il
T = 2h.= ma, | /1200-0y= 600
Oy | Oy = OO N

JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

Example 2:

The bicyclist applies the brakes as he descends the
10° incline. What deceleration a would cause the
dangeroua condition of ipping about the front wheel
A? The combned center of masa of the rider and bi-

cycle 15 at G.

Solution:

Tt'p?inj at front uhnee| : Nﬂ) g "9
i) >My=mad ¢ mg (25 Cos 10° = 36 sinl0®)

= ma (35)

Solve v  obtam QA = 0.5|0j (|6.43 'F't]se.:.?')

JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

Example 3:

Determine the magnitude P and direction # of the
force required to impart a rearward acceleration
a = 5 ft/sec” to the loaded wheelbarrow with no rota-
tion from the position shown. The combined weight
of the wheelbarrow and its load iz 500 Ib with center
of gravity at (7. Compare the normal force at B
under aceeleration wilh Lthal for stalic equilibrium in
the position shown. Neglact the friction and mass of ) L 'B
the wheel. h = e

Solution:
Static equilibrium @ Ty = ma =0
WZM, =0 So0(4s) — B(4F) =5; B=4IT b
Djnq;n'\c, . ZM“-'- mad
500 (43) - 8 (48) = T2, (5)(4) | B= 4lo Ib

< Zh=ma: Bz 22 (5)= 77 lb}.‘. P= 1T

32.2
M ) EFy=o0: B-500+h =0, Py= 9.8k | ©= 49.2°
JAAFARMOHAMMEDHAMZAH
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6.1 Force, Mass, and Acceleration

Example 4

The loaded pickup truck, which weighs 3600 lb with
maazs center at (7, 13 hauling the 1800-1h trailer with
mazs center at ,. While going down a 10-percent
grade, the driver applies his brakes and slows down
from 60 mi/hr tc 30 mi’hr in a distance of 360 ft. For
thia interval., compute the » and y-componenta of
the force exerted on the trailer hitch at DD by the

truck. Also find the corresponding normal force

under each pair of wheels at B and (. Neglect the ro- ffao /b
tational effect of the wheels.
. .-.-- m a
Solutlon For const accel, a__ }s"
=y 24 Zas: 44%= 88*- 2a(360) a=58.07 fifsec” decel. D ?g-
m,a -_;a;‘i" 8.07=902 Ib, m, a = fz"f x8.07 =45/ /b ____f:_'_;___”

Trailer: <5, =ma, D ~/800 sin 5 7/ "-‘.'v’:j"/ =630 /6 ‘g
fZM mad’ J-OD 1"630{!8) ffﬂd&:nj?/m)-éff/@o) D =277 Ib 8= z‘an-’—- .5"7.?

Z!; o: M - /5’0&@:5.7! + 277 =0, N, = 15/4/b

Truck: (ZMy=mad : 3600 cos 5.7/ °x58 -3600sin 5.7/ 24— | 20 Ng+ 277(168) ~630(18) = 902 (24)

A{s =1773 I 12
JAAFARMOHAMMEDHAMZAH




6.1 Force, Mass, and Acceleration

.6 m
] B
Example 5: ssomll |
The vertical bar AB has a mass of 150 kg with center of mass G midway be- O E; 18m,

tween the ends. The bar is elevated from rest at # = 0 by means of the parallel
links of negligible mass, with a constant couple M = 5 KIN-m applied to the lower
link at C. Determine the angular acceleration a of the links as a function of #
and find the force B in the link DB at the instant when #= 30°.

Solution:

"Mechanical Engineering Dynamics", 6™ Edition, Meriam, Page 431.

13
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6.1 Force, Mass, and Acceleration
Example: HW

The 1600-kg car has its mass center at G. Calculate the normal
force Ny and Ng between the road and the front and rear pairs
of wheels when acceleration of the car is 2 m/s?>. The mass of
the wheels are small compared to the mass of the car.

1200 | 1200 | Ans. Ny = 6.85 kN, N = 9.34 kN
mm mm '

m Do this: If the coefhicient of static friction between the
tire and the ground is 0.8, what is the maximum possible
acceleration of this car if

m it is a front wheel drive car,
m it is a rear wheel drive car.
JAAFARMOHAMMEDHAMZAH
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6-2 Work and

Energy




m 1. Introduction

m 2. Work

m 3. Kinetic Energy

m 4. Work - Energy Equation
m 5. Conservation of Energy

2103-212 Dynamics, NAV, 2011



6-2 Work and Energy

1. Introduction

m Useful when forces involved are function of
displacement/position of the system; i.e., configuration of

the rigid body.

m To get changes in velocity/angular velocity between the
starting point and the end point of a motion (or
configuration of the system)

m Very easy for an interconnected rigid body.

2103-212 Dynamics, NAV, 2011



6-2 Work and Energy
2.1 Work of a Force

U= [ Mdo

df

2103-212 Dynamics, NAV, 2011



3. Kinetic Energy

m 1. Translation Only
1 2

I = T

m 2. Fixed Axis Rotation

1l 2
— ZAw 1 2 1, .2
T 2!{3' or T mv. -+ EJ'GU"

= 2
m 3. General Plane

I = %mvé + %f};u.fz

Note: Rotation about ICZV
T = 3lcw?

2103-212 Dynamics, NAV, 2011



4. Work — Energy Equation

m Elastic potential is the same as in the particle case.

m Gravitational potential, use location of the mass center, G

m Work-energy relation also applied to a rigid body and
interconnected rigid bodies

Work-Energy Equation
U_,=AT+AV, + AV,

m U{_, = Work of external force on the system, not
including gravitational and elastic force.

2103-212 Dynamics, NAV, 2011
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6-2 Work and Energy

Example 1:
The 10-kg double wheel with radius of gyration of 125 mm
about O is connected to the spring of stiffness k = 600 N/m by
a cord which is wrapped securely around the inner hub. If the
wheel is released from rest on the incline with the spring
stretched 225 mm, calculate the maximum velocity v of its
center O during the ensuing motion. The wheel rolls without

slipping.

2103-212 Dynamics, NAV, 2011



Example 2: Ventilator Door

The figure shows the cross section
of a uniform 100-kg ventilator door
hinged about its upper horizontal
edge at O. The door is controlled by
a spring-loaded cable which passes
over the pulley at A. The spring has
a stiffness of 200 N/m and is
undeformed when 6 = 0. If the door
IS released from rest in the
horizontal position, determine the
door’s maximum w and the
corresponding angle 0.

2103-212 Dynamics, NAV, 2011 8



Example 3: Rolling Wheels
Each of two wheels has a mass of 30 kg and a radius of

gyration of 100 mm. Each link OB has a mass of 10 kg. The 7-
kg collar at B slides on the fixed vertical shaft with no friction.
The spring has the stiffness k = 30 kN/m and is contacted by
the collar when 0 = Q°. If the collar is released from rest at 0 =
45° and the wheels do not slip, determine a) vg when 8 = 0°and

b) maximum deflection of the spring.

B

6 0
> ),
A rg\%@ Slbfb A
2ol SA - RSN
150 0] 0 150

2103-212 Dynamics, NAV, 2011 9



6-3 Impulse and

Momentum




m 1. Introduction

m 2. Linear Impulse and Momentum
m 3. Angular Impulse and Momentum
m 4. Conservation of Momentum

2103-212 Dynamics, NAV, 2011



6-3 Impulse and Momentum
1. Introduction

m Advantages

m Good when force is a function of time

m Good if interaction of bodies occurs during a short time;
e.g., impact problems

m Good when momentum is conserved (obviously).

Applications:

(!_> 1 rev/s

2103-212 Dynamics, NAV, 2011 3



2. Linear Impulse and Momentum

Linear Momentum

sz_};

Newton's generalized second law YF, = G,
YF=G LFy = G
Impulse-Moment Equation = Gx, — Gy
“YFdt = G, — G ta
ftl / EF}, dt — G}’E — G}rl
£y

2103-212 Dynamics, NAV, 2011



2. Linear Impulse and Momentum

Notes:

m Even when the wheel is rolling without slipping, the friction
will have impulse!

m However, recall that friction have no work if the wheel is
rolling without slipping.

2103-212 Dynamics, NAV, 2011 5



3. Angular Impulse and Momentum
3.1 About G

The moment equation

YM¢e = He

The Impulse and Momentum Equation

f? 2 Mg dt = Hg, — Hg,

t

2103-212 Dynamics, NAV, 2011



6-3 Impulse and Momentum
3. Angular Impulse and Momentum

3.2 About Any Fixed Point

\w* m The moment equation:
v Mo = H(}
- ‘\—' where,
d Ho = lgw + mvgd

2103-212 Dynamics, NAV, 2011



6-3 Impulse and Momentum
3. Angular Impulse and Momentum

3.3 About the Fixed Axis

w* Fixed-Axis Rotation
HD = 1"{):‘.:.! — EMD = ."Du.?

v
——’*

Fixed-Axis Rotation

ft? 2 Mp dt = f.-j(f.:.!g — u.:l)

2103-212 Dynamics, NAV, 2011



6-3 Impulse and Momentum
4. Conservation of Momentum

For system of particle,

m When no net external force
AG =0

®m When no net moment (external forces and couples only)
about a fixed point O

AHp =0
m Or about the system’s center of mass G

AHg =0

2103-212 Dynamics, NAV, 2011



Example 1: Rolling Wheel

The force P, which is applied to the cable wrapped around the
central hub of the symmetrical wheel, is increased slowly

according to P = 6.5t, where P is in newtons and t is the time
in second after P is first applied.

Determine the angular velocity
w of the wheel 10 s after P is
applied if the wheel is rolling to
the left with a velocity of its
center of 0.9 m/s at time t =
0. The wheel, which has a
mass of 60 kg and a radius of
gyration about its center of
250 mm, rolls without slipping.

220 mm 450 mm

'|'T|| = 0.9 m/s

2103-212 Dynamics, NAV, 2011 10



6-3 Impulse and Momentum
Solution: Example 1

(t=0 668N ¥ (t=10s)

ol ™ I +
mv / + \ | my
-(¢ [ | '----J:ir-)
B v G P
' M —_— I,—
0 C !

_-__

2103-212 Dynamics, NAV, 2011
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Example 2:

Each of the two 300-mm rods A B
has a mass of 1.5 kg and is |

hinged at its end to the rotating | i
base B. The 4-kg base has a , i

radius of gyration of 40 mm and “—

60 mm

is initially rotating with a speed of \‘\*\\?ﬁ;
300 rev/min. If the rods are ==
released to fall down to the

horizontal positions, calculate
the new rotational speed.

2103-212 Dynamics, NAV, 2011
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Rotation
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6.4 Fixed Axis Rota

m Fixed Axis Rotation:

EOM: General Motion

0

Zﬁ = mé’G m{;
Cx
t

Mg = Iga

and
2 Mp = lpa

m Rigid body rotates about O

tion

7

a .
R

Il
=

1
\

(4
L /\a,, = o
n\
0

m Mo = moment of forces about O

m /o = mass moment of inertia about point O

JAAFARMOHAMMEDHAMZAH

Kinematics:
B (ag)t = AoG X ro—6

N (Eg)n =
Joe X (Woe X fo_¢)

Fn = m(a6)n = mw?r

NANA

F: = m(ag)t = mra



" A
6.4 Fixed Axis Rotation

m Area Moment of Inertia (Ix, Iy, Iz):
The moments of inertia of a plane area A

about x- and y- axes in its plane and about
z- axis normal to its plane are defined by:
I‘E—J;ﬁgdA Ji‘,—J*.rsz IE—Jr-EdA

s Mass Moment of Inertia (/):

It is the force (dm X r«o) multiplied by the radius

of the rotation. Thus, it is: [ ] ,
I=J-r2dm j:ijﬁde

3
= Zrism;

JAAFARMOHAMMEDHAMZAH
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6.4 Fixed Axis Rotation
m Radius of Gyration (k):

m Radius of gyration is often used to specify the mass
moment of inertia of a rigid body.

(i

m Given mass m and the radius of gyration kp (about point k= | Le
P), we have B
fp = mk%
m Usually point P is G or the fixed point O T \/z ar. ek
m Imagine mass concentrated at radius kg b

m Parallel Axis Theorem:

It's easily to determine moment of inertia
about any axis parallel to the mass center, as:

- il

" I; : Moment of inertia about G
[I = I+ ”‘dzJ d : Perpendicular distance to C

JAAFARMOHAMMEDHAMZAH
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6.4 Fixed Axis Rotation

m Mass Moment of Inertia (]about ax,-S)Z (Look up TABLE D/4 in the Book)

E i
! e --"
2 2
Circular - Rectangular
. . Circular b .--'\L = ;
Cy];l;lt;}cal Cylinder z— G \ Parallelepiped
a y
M |
Yz 5
I, = ﬁm[&ﬂ + B2
I _
[ = 1
3T |
. Spherical \M Uniform
 — Shell . Sphere .- G Slender Rod
» g
I, = gmr‘z IJ‘J‘ = mmli

JAAFARMOHAMMEDHAMZAH
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0.4 Fixed Axis Rotation

Proof: S Mo — loo

m 2 Mo = lga + magr

m But, ag; = ar

m Then,
ZMO = g+ mr 2
Mo = (lg+ mrz)n

B We know that

_____________________________

Free-Body Diagram Kinetic Diagram

Parallel Axis Theorem

JAAFARMOHAMMEDHAMZAH
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6.4 Fixed Axis Rotation

Example 1:

Each of the two drums and connected hubs of 8-in. ra-
dius weighs 200 lIb and has a radius of gyration about
its center of 15 in. Calculate the angular acceleration

of each drum. Friction in each bearing is negligible.

Solution:
(a % A 2
) M=l | 735 = S22 (),
27 maj 30-T = 32, (ha)

Solve Stricel/fancously & se’
/% /= 28.77 /6 - o{ﬂ: ].976 ,-gd'/_.,-,‘-_z

Jo /&

i : & _ 200 /152 _
Z%‘%"() JO;2 32.2(/2) "{b

xX,= 2.06 nm://sec.z

7
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6.4 Fixed Axis Rotation

Example 2:

If the frictional moment at the pivot O is 2 N+ m, de-
termine the angular acceleration of the grooved
drum, which has a mass of 8 kg and a radius of gyra-
tion kp = 225 mm.

Solution: GBTM =T For drom : 12 kg
' T, (07) T2 (03)-2= 8(0.225)% (i)
AVEF = ma Afor lz—kj SULTE
1I2(8))-T, = 12 (o.zd) (2)
HMZF = ma for "]—Kj Q:‘jl{nw-_
T T- 7008 = 7 (o.Sck\ (3)
3 Solutwn  of Es.  (1)~(3):
] v T, = 162N
12(1L)N 738N ) T, = T0.0N

K = 0.622 vod[s*
JAAFARMOHAMVEDHAMZAH




6.4 Fixed Axis Rotation

Example 3:

The uniform 16.1-Ib slender bar ig hinged about a

horizontal axis through O and released from rest in G W ]
the horizontal position. Determine the distance b R _j
from the mass center to O which will result in an ini- = 12’ -+ 12"

tial angular acceleration of 16.1 rad/sec’, and find
the force R on the bar at O just after release.

R
Solution: . glb o
IOIJ-ML1+M.£ | & |===n

/2 2 7 ~—F
=_"_5.J(_'g_ b ) L 4

32.2 :.i 16.] /b o =/6.1 rad/sec?
= .1'..+-b— Jb-Fb-sec™ I

- - ¢

SMy=T «: /5./.5={‘5—’+§f)/5,/) 3b%-6b+1=0
b=/+yZ4/6 b=0./835Ft (1817 Ft ),
b=2.20 in.
=mrua: /6.1-R=161 . = /4,62 /b
ZF,=mro: /6./-R 32.20,/'335(16 1), R

JAAFARMOHAMMEDHAMZAH



6.4 Fixed Axis Rotation

Example 4

The uniform 72-ft mast weighs 600 1b and is hinged
at its lower end to a fixed support at O. If the winch
C develops a starting torque of 900 lb-ft, calculate
the total force supported by the pin at O as the mast
begins to lift off its support at B. Also find the corre-
sponding angular acceleration « of the mast. The
cable at A is horizontal, and the mass of the pulleys

and winch is negligible.

Solution:

MeIr e 20299 500 4

0= G,
Joo (4§ cos 60"') 600(56.:‘:&-.-60’,
-/ 6002 53
3 322 e 0(

ol = 0.0899 rud/sec’

0’? O}_

fE:mEé)' gt 700 cos fc; ~600 Simé60°= 600(35)@ ozﬁj
0£= 129.9 fb

z'/.;_;:ma‘.ﬂ: o, oo $/m60°+ 600 €05 60°~-0, =0
O,h=!or?.4‘ /b

O =V /277 4 16794 2= 1097 14
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6.4 Fixed Axis Rotation

/m,l

Example 5:
= l -
The uniform slender bar is released from rest in the ‘
horizontal position shown. Determine the value of x A I_‘iG ;
for which the angular acceleration is a maximum, 0
and determine the corresponding angular accelera-
tion w.
Solution:
. , S
To= Tgt mx = jaml*+my®= \'n("l?ﬂk) -<Ll n3
. | ?
22 M, = Lo mg X = M(T;z-i»lx)o{ C o a 3
. g% 0
2074
le_o_\_ am (-\]EQQ“"‘I)j-Sx(ZK) -0 = /A= '—RF
X Gz 2*+at )™ oo
0
- Sz 3 3
oas, =2z Lt = 3 . j
120+ 128 ———

JAAFARMOHAMMEDHAMZAH
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6.4 Fixed Axis Rotation
Example: H.W1

At the instant shown in Fig. 17-16a, the 20-kg slender rod has an , \oN-m
angular velocity of @ = 5rad/s. Determine the angular acceleration | : "_>;—_.= \ w = Srad/s
and the horizontal and vertical components of reaction of the pin e 4

on the rod at this instant.

AnS. Un = 750N U;: 1905 N C!':S.gﬂl'ﬂ_df&;:

Example: HW?2

The slender rod shown in Fig. 17-18a has a mass m and length / and is
released from rest when # = 0°. Determine the horizontal and vertical
components of force which the pin at A exerts on the rod at the instant
6 = 90°.

AnS a=0 A, =0A, = 25mg

Example: H.Wa3:
Solve Problem 6.54, Page 448. "Mechanical Engineering 2

Dynamics", 6 Edition, Meriam. Amns.:
r=Yis.8) +(18.35)* = 167.8 N

JAAFARMOHAMMEDHAMZAH F4(5.81) N
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6.5 General Plane Motion

m General Plane Motion:

The rigid body is subjected to general plane motion caused by
external applied force and couple-moment system. The three
equations of motion may be written as:

¥

2F, = mlag),
2F, = mlag),

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

m Friction Rolling Problems

There is a class of planer kinematics problems which deserves
special motion. These problems involve wheels, cylinder, disk, or
bodies of similar shape, which roll on a rough plane surface.

:

» Rolls without slipping

e E:J N | 4 ) .
Sy F = m(aG)x — F = mag] -~ (D Fhre® equations with |
our Yhknown variables:
M LE = m(aa)y ;  N-mg=0] @) a6 N, a) We need to
~[YM; = ; F-r=Iqa] 3) another equation.

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

* No slipping:

If the friction force F is greater enough to allow the disk to roll
without slipping

la; = ar] (4

Sec =716

~

Only for cylinder
Ve =Tw > rolling without
slipping.

ac =ra
G /

When thé salﬁion IS obtained, the assumption of no slipping must
be checked.

ity
= 3
- ! —’/

Recall that no slipping occurs provided must be reworked, then
the disk slips as it rolls.

Akl A Hilld V) s dagsa A yilld [F < g - N Aalaal) Cisaad 1)

4
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6.5 General Plane Motion
= Slipping:
If the case of slipping, a; and « , are independent of one other so

that eq.(1) doesn't apply. Instead, the magnitude of the fractional
force is related to the magnitude of the natural force using u, is:

[F =wue N (5]
. No Slipping 4l & aadiun 1 5 Sl AW Jalaa g @

. Slipping U & aodiiy ; Solaasl) Sllia) Jalea g, o

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

Example 1: R-El

The solid homogeneous eylinder is released from rest
on the ramp. If 8 = 40°, u, = 0.30, and pu, = 0.20, de-
termine the scceleration of the mass center (& and the
friction force exerted by the ramp on the cylinder.

SOIUtlonMj =80 TwLmr® A= 03 fy = 020
3

TFy= Mmay : —F Tsim4' = o a ()

P N - Becosd® = o (=)
- B 6 \ o

=Mg= T F (T"a)= Y 32,2 _I'i) = (3)

Assumt  alling with Ny slp a= B« @)

Selutian of (M -8): F=LTI4 1b a=13.% Sﬂzp

N= 613 b =210 g—-&

Frayg = Mg N = 0.3 (@.1’3)‘—‘- 1.839 Ip >

m

HSSU\‘W?'F‘-Oﬂ vold

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

Example 2:
Repeate Example 1, except let 4 = 30° . = 0.15, and pp = 0.10.

Solution: (.. -en, == 2w

}Js=0a ]5} )lk.: 0.1

6 = 34°

ZFy=ma, ! —F+ Bsin30’ =

B 5
R O ("
EF\‘.} T TR N- B cos " =0 (z)
— A e =t _3_‘_ —232
Z Wg= Lot F(ﬁ}"zsz.z 2) % (3)
Rssume mllirjj with e shp:  a= & o @)

Solution of (N-H): F=1.333 kb a= 1073 :;—Zs_
N= 93 15 «=z1,5 2%
Frnex= P N= 0.15(6.93) = L0317 1b < F = slips

V= PN = 0,10(6.93) = 0.693 1b " iy
From K45, () 4(3: a = '3.3\ ¥t)sec ’ggg (115 Tec2

JAAFARMOHAMMEDHAMZAH



6.5 General Plane Motion

C
Example 3:
The uniform 12-kg square panel is suspended from 142>
point C by the two wires at A and B. If the wire at B
suddenly breaks, calculate the tension T in the wire b
at A an instant after the break occurs.
Solution: £, < Tt + maid ’
m -'—-mb of M .é °{ b
2 6 V2
= J2 C
36 e
M, = T Al
P T = .:'-rf
vZ ~ &% (45) j R T |o
-ﬁ =£ & mrﬂg)--)‘l“.i
ke iy B (1K /) -ra:w, s
= 20.8 N b

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

Example 4

In an investigation of whiplash resulting from rear-
end collisions, sudden rotation of the head is mod-
eled by using a homogeneous solid sphere of massm  Vertical
and radius r pivoted about a tangent axis (at the
neck) to represent the head. If the axis at O is given
a constant acceleration ¢ with the head initially at

rest, determine expressions for the initial angular
acceleration « of the head and its angular veloeity

w as a function of the angle # of rotation. Assume
that the neck 1s relaxed so that no moment 1s ap-
plied to the head at O.

JAAFARMOHAMMEDHAMZAH



6.5 General Plane Motion

Solution: m E
o I Bh
L= 5wr . I

—

T M= Tk-mar: Q= %—mr‘x-mﬁr Tarel g

5|0 ‘-"IN
g

..4|u1

+Qgfy * PR S o 5\"@#0(-

B

Mo = Ioc+tmmd n'\t]rsme -;r)—mr A+ MY A =marcosd
A = '7r ( Sme 4 G t‘-osé)
WAdw = (48 : fo wdw = 7r, I @s»-\emmejdo

o= '\’—'-1—:\/3(! cose)+cx5m6

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

Example 4
The uniform ba- of mass m and length L is moving A L =t~ B

horizontally with a velocity v on its ligh: end rollers.
Determine the foree under roller B an metant after

it pasges polnt ' and prior to mechan cal interfer-
ence with the path. At what velocity v will the force
under roller B reach zero?

G A G\ B
. L/z 1 L/z 3> = ij_ D |
Solution: 1‘ LA «
mg B |
a, = T] . Y ma
el = PR i _ag _uv*
im0 raxgy A=y “‘f'f}'
F X
ZM, ma--+]x mg—--Bf- o zj" ,E}”'La“i_
RS L A i
B=m = .3':-)

B=0 f’f[ ...g__(’:.f: g =
2 Tz o, ]/_?gr/z .

JAAFARMOHAMMEDHAMZAH
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6.5 General Plane Motion

H.W:
6/88 The circular disk of 200-mm radius has a mass of

25 kg with centroidal radius of gyration £ = 175
mm and has a concentric circular groove of 75-mm
radius cut into it. A steady force T is applied at an
angle ¢ to a cord wrapped around the groove as
shown. IfT = 30N, 6§ = 0, u, = 0.10, and yu,; = 0.08,
determine the angular acceleration « of the disk,
the acceleration a of its mass center (7, and the fric-
tion force ¥ which the surface exerts on the disk.

Ans. o = -2.12 rad/s*, a = 0.425 m/s>, F = 19.38 N

6/89 Repeat Prob. 6/88, except let T = 50 N and 6 = 30°.
Ans. a = 0.295 rad/s’, a = 1.027 m/s*, F = 17.62 N

6/90 Repeat Prob. 6/88, except let T = 30 N and ¢ = 70"
Ans. oo = 0.1121 rad/s>, a = - 0.0224 m/s>, F = 10.82 N

12
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