1

College of Engineering Bio. Eng. Dept. Subject: Numerical Analysis Third Stage

Lecturer : Zaher M.Abed

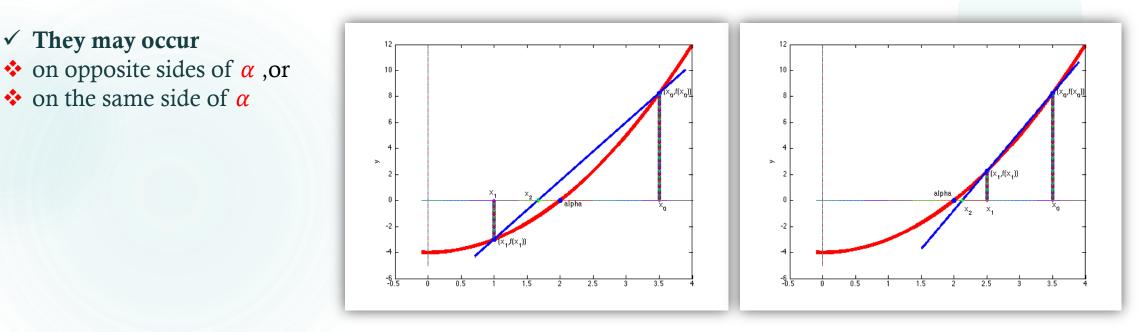
Lecture 3

3. The Secant Method

Introduction

The Newton method is based on approximating the graph of y = f(x) with a tangent line and on then using a root of this straight line as an approximation to the root α of f(x). From this perspective,

other straight-line approximation to y = f(x) would also lead to methods of approximating a root of f(x). One such straight-line approximation leads to the secant method. Assume that two initial guesses to α are known and denote them by x_0 and x_1 .



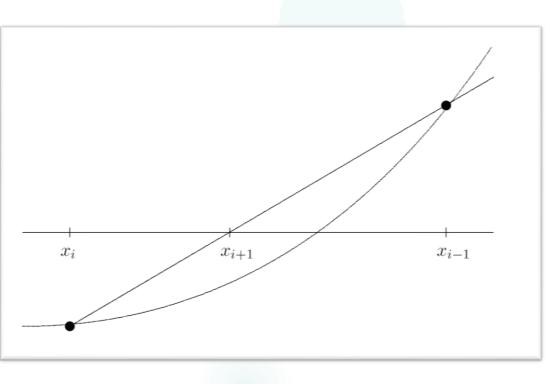
The secant method requires two initial approximations x_0 and x_1 , preferably both reasonably close to the solution x^* . From x_0 and x_1 we can determine that the points $(x_0, y_0=f(x_0))$ and $(x_1, y_1=f(x_1))$ both lie on the graph of f. Connecting these points gives the (secant) line

$$y - y_1 = \frac{y_1 - y_0}{x_1 - x_0} (x - x_1)$$

Since we want f(x) = 0, we set y=0, solve for x, and use that as our next approximation. Repeating this process gives us the iteration

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{y_i - y_{i-1}} y_i$$

with , $y_i = f(x_i)$. See Figure for an illustration.



4

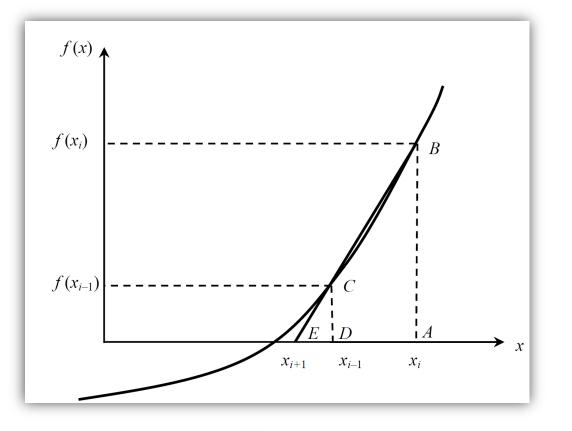
✓ The secant method can also be derived from geometry, as shown in Figure . Taking two initial guesses, x_{i-1} and x_i , one draws a straight line between $f(x_i)$ and $f(x_{i-1})$ passing through the x -axis at x_{i+1} . ABE and DCE are similar triangles.

Hence

 $\frac{AB}{AE} = \frac{DC}{DE}$ $\frac{f(x_i)}{x_i - x_{i+1}} = \frac{f(x_{i-1})}{x_{i-1} - x_{i+1}}$

On rearranging, the secant method is given as

$$x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$



5

Example:

Use the Secant method to estimate the root of $f(x) = e^{-x} - x$. Start with initial estimates $x_{i-1} = 0$ and $x_i = 1$?

Solution:

$$x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

✓ For i=0

$$x_{-1} = 0 \gg f(x_{-1}) = e^{-x_{-1}} - x_{-1} = e^0 - 0 = 1$$

 $x_0 = 1 \implies f(x_0) = e^{-x_0} - x_0 = e^{-1} - 1 = -0.63212$
 $x_1 = x_0 - \frac{f(x_0)(x_0 - x_{-1})}{f(x_0) - f(x_{-1})} = 1 - \frac{-0.63212(1 - 0)}{-0.63212 - 1} = 0.61270$

✓ For i=1

$$x_0 = 1 \implies f(x_0) = e^{-x_0} - x_0 = e^{-1} - 1 = -0.63212$$

 $x_1 = 0.61270 \implies f(x_1) = e^{-x_1} - x_1 = e^{-0.61270} - 0.61270 = -0.07081$
 $x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)} = 0.56384$

✓ For i=2

$$x_1 = 0.61270 \implies f(x_1) = e^{-x_1} - x_1 = e^{-0.61270} - 0.61270 = -0.07081$$

 $x_2 = 0.56384 \implies f(x_2) = e^{-x_2} - x_2 = e^{-0.56384} - 0.56384 = 0.00518$

$$x_3 = x_2 - \frac{f(x_2)(x_2 - x_1)}{f(x_2) - f(x_1)} = 0.56717$$

✓ For i=3 $x_2 = 0.56384 \gg f(x_2) = e^{-x_2} - x_2 = e^{-0.56384} - 0.56384 = 0.00518$ $x_3 = 0.56717 \gg f(x_3) = e^{-x_3} - x_3 = e^{-0.56717} - 0.56717 = -0.00004$ $f(x_2)(x_2 - x_3)$

$$x_4 = x_3 - \frac{f(x_3)(x_3 - x_2)}{f(x_3) - f(x_2)} = 0.56714$$

i	<i>x</i> _{<i>i</i>-1}	$f(x_{i-1})$	x _i	$f(x_i)$	<i>x</i> _{<i>i</i>+1}	$ \varepsilon_a = \left \frac{x^{new}_m - x^{old}_m}{x^{new}_m} \right * 100\%$
0	0	1	1	-0.63212	0.61270	100 %
1	1	-0.63212	0.61270	-0.07081	0.56384	77.3553 %
2	0.61270	-0.07081	0.56384	0.00518	0.56717	8.0276 %
3	0.56384	0.00518	0.56717	-0.00004	0.56714	0.5819 %
4	0.56717	-0.00004	0.56714	0.00001	0.56715	0.0035 %
5	0.56714	0.00001	0.56715	-0.00001	0.56715	0.0018 %

Homework:

Find the roots of the following equation $x^6 - x - 1 = 0$ Use the secant method ($\varepsilon_a = 0.00001$)?

