College of Engineering Bio. Eng. Dept. Subject: Numerical Analysis
 Third Stage

2. The Newton-Raphson method

Introduction

Recall that the equation of a straight line is given by the equation

$$
\begin{equation*}
y=m x+n \tag{1}
\end{equation*}
$$

where m is called the slope of the line. (This means that all points (x, y) on the line satisfy the equation above.). If we know the slope m and one point $\left(x_{0}, y_{0}\right)$ on the line, equation (1) becomes:

$$
\begin{equation*}
y-y_{0}=m\left(x-x_{0}\right) \tag{2}
\end{equation*}
$$

Introduction

Assume we need to find a root of the equation $f(x)=0$. Consider the graph of the function $f\left(x_{i}\right)$ and an initial estimate of the root, x_{i}. To improve this estimate, take the tangent to the graph of $f(x)$ through the point $\left(x_{i}, f\left(x_{i}\right)\right)$ and let x_{i+1} be the point where this line crosses the horizontal axis.

Derivation of Newton-Raphson Method

Graphical Derivation

\checkmark Newton-Raphson Iteration
From the previous figure,

$$
\begin{gathered}
\text { Slope }=-f^{\prime}\left(x_{i}\right)=\left.\frac{d f(x)}{d x}\right|_{x=x_{i}}=\frac{f\left(x_{i}\right)-0}{x_{i+1}-x_{i}} \\
x_{i+1}-x_{i}=+\frac{f\left(x_{i}\right)}{-f^{\prime}\left(x_{i}\right)} \\
x_{i+1}=x_{i}+\frac{f\left(x_{i}\right)}{-f^{\prime}\left(x_{i}\right)}
\end{gathered}
$$

Derivation of Newton-Raphson Method

Note :
that since the root of the function relating $f(x)$ and x is the value of x when $f\left(x_{i+1}\right)=0$ at the intersection, hence,

$$
\begin{gathered}
f\left(x_{i+1}\right)=0=f\left(x_{i}\right)+\left(x_{i+1}-x_{i}\right) f^{\prime}\left(x_{i}\right) \\
\left(x_{i+1}-x_{i}\right) f^{\prime}\left(x_{i}\right)=-f\left(x_{i}\right) \\
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
\end{gathered}
$$

$x_{i}=$ value of the root at iteration i
$x_{i+1}=$ a revised value of the root at iteration $i+1$
$f\left(x_{i}\right)=$ value of the function at iteration i
$f^{\prime}\left(x_{i}\right)=$ derivative of $f\left(x_{i}\right)$ evaluated at iteration i

Example:
Use the Newton-Raphson iteration method to estimate the root of the following function employing an initial guess of $x_{0}=0$:

Solution:
 $$
f(x)=e^{-x}-x
$$

Lets find the derivative of the function first

$$
f^{\prime}(x)=\frac{d f(x)}{d x}=-e^{-x}-1
$$

The initial guess is $x_{0}=0$, hence,
$\checkmark \mathrm{i}=0$

$$
\begin{aligned}
& f(0)=e^{0}-0=1 \quad \gg \quad f^{\prime}(0)=-e^{-0}-1=-1-1=-2 \\
& x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad \gg x_{0+1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \quad \gg \quad x_{1}=0-\frac{1}{-2}=0.5
\end{aligned}
$$

Now $x_{1}=0.5$, hence,
$\checkmark \mathrm{i}=1$
$f(0.5)=e^{-0.5}-0.5=0.1065 \quad \gg \quad f^{\prime}(0.5)=-e^{-0.5}-1=-1.6065$
$x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad \gg x_{1+1}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \quad \gg \quad x_{2}=0.5-\frac{0.1065}{-1.6065}=0.5663$

Now $x_{2}=0.5663$, hence,
$\checkmark \mathrm{i}=2$
$f(0.5663)=e^{-0.5663}-0.5663=0.001322 \quad \gg \quad f^{\prime}(0.5663)=-e^{-0.5663}-1=-1.567622$
$x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad \gg x_{2+1}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \quad \gg \quad x_{3}=0.5663-\frac{0.001322}{-1.567622}=0.5671$
Now $x_{3}=0.5671$, hence,
$\checkmark \mathrm{i}=3$
$f(0.5671)=e^{-0.5671}-0.5671=0.00006784 \gg \quad f^{\prime}(0.5671)=-e^{-0.5671}-1=-1.56716784$
$x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad \gg x_{3+1}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)} \quad \gg \quad x_{4}=0.5671-\frac{0.00006784}{-1.56716784}=0.5671$

Homework:

Find the roots of the following equation $x^{6}-x-1=0$ Using an initial guess of $x_{0}=1.5$?

