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Strength of materials is a branch of applied mechanics that deals with the behavior of

solid bodies subjected to various types of loading. The solid bodies include axially-loaded
bars, shafts, beams, and columns. The objective of analysis will be the determination of the
stresses, strains, and deformations produced by the loads.

Simple Stress (c):

It a cylindrical bar is subjected to a direct pull or push along its axis, then it is
said to be subjected to tension or compression.

! G G

Tension Compression

In Sl systems of units load is measured in Newton (N) or Kiloewton (KN) or
Meganewton (MN).

Normal stress (o) : is the intensity of normal force per unit area

Load
Area

Stress =

P
o=
A
stress may thus be compressive or tensile depending on the nature of the load and will be
measured in units of Newton per square meter (N/m?). This unit, called Pascal

1 Pa=1 N/m?

1 KPa=1000 Pa=10° Pa
1 MPa=10° Pa

1 GPa=10° Pa

In the U.S. customary or foot-pound-second system of units, express stress in
pounds per square inch (Psi) or kilopound per square inch (Ksi)

Normal Strain (g):

It a bar is subjected to a direct load, and hence a stress, the bar will change in

length. If the bar has an original length (L) and changes in length by an amount (L), the
strain produced is defined as follows



changeinlength

Strain(e)=—"—=
originallength

Strain is thus a measure of the deformation of the material and is non-dimensional,
I.e. it has no units. Tensile stresses and strains are considered positive sense. Compressive
stresses and strains are considered negative in sense.

Shear Stress (t) and Bearing Stress (o, ):

Shearing stress differs from both tensile and compressive stress in that it is
caused by forces acting along or parallel to the area resisting the forces, whereas tensile
and compressive stresses are caused by forces perpendicular to the areas on which they act.
For this reason, tensile and compressive stresses are called normal stresses, whereas a
shearing stress may be called a tangential stress.

A shearing stress is produced whenever the applied loads cause one section of a
body to tend to slide past its adjacent section.

Shear stress=___onearload
Arearesistingshear
Q
o
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—
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Area resisting shear is the shaded area as shown above.
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Bearing stress is a normal stress that is produced by the compression of one
surface against another. The bearing area is defined as the projected area of the curved
bearing surface.
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Consider the bolted connection shown above, this connection consists of a flat bar
A, a clevis C, and a bolt B that passes through holes in the bar and clevis. Consider the
bearing stresses labeled 1, the projected area Ay on which they act is rectangle having a
height equal to the thickness of the clevis and a width equal to the diameter of the bolt, the
bearing force F, represented by the stresses labeled 1 is equal to P/2. The same area and the
same force apply to the stresses labeled 3. For the bearing stresses labeled 2, the bearing



area A, is a rectangle with height equal to the thickness of the flat bar and width equal to
the bolt diameter. The corresponding bearing force F, is equal to the load P.

Shear Strain (vy):

Shear strain is a measure of the distortion of the element due to shear. Shear
strain is measured in radians and hence is non-dimensional, i.e. it has no units.

T

v

A

Elastic Materials-Hook's Law:

A material is said to be elastic if it returns to its original, when load is

removed. In elastic material, stress is proportional to strain. Hook's law therefore states
that:
Stress (o ) oc strain ( ¢)
Stre§S = constant
strain
Within the elastic limit, i.e. within the limits in which Hook's law applies, it has

been shown that:

Y_E
£

This constant is given the symbol E and termed the modulus of elasticity or
Young's modulus.

Poisson's Ratio (v ):

Consider the rectangular bar shown below subjected to a tensile load. Under

the action of this load the bar will increase in length by an amount 5L giving a longitudinal
strain in the bar of:

g =&
L
The bar will also exhibit a reduction in dimensions laterally i.e. its breadth and

depth will both reduce.
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The associated lateral strains will both be equal, will be of opposite sense to the

longitudinal strain, and will be given by:
o o

bl =7 T

d b
Poisson's ratio is the ratio of the lateral and longitudinal strains and always

constant
Lateral Strain

Longitudinal Strain

Poisson's ratio=

od /d
V=—-
oL/L

Longitudinal Strain:%

Lateral Strain= u%

Modulus of Rigidity ( G):
For materials within the elastic range the shear strain is proportional to the shear

stress producing it.
ToCy

ShearStress
ShearStrain

=Constant

E:G
/4

The constant G is termed the modulus of rigidity.



Example 1:A 25 mm square cross-section bar of length 300 mm carries an axial
compressive load of 50 KN. Determine the stress set up in the bar and its change of length
when the load is applied. For the bar material E=200 GN/m?.

50KN 25mm

Y

300mm

Cross-section area of the bar(A)=25x10"°x25x10°=625x10° m?

P
o=—
A

3
= 2010°__g4000000 N/m?
625%x10

5=80 MN/ m?

O
&E=—
E

_ 80x10°

&= -=0.0004
200x10

AL=d
SL=0.0004x300x107°=0.12x10°m

0L=0.12 mm



Example 2: Two circular bars, one of brass and the other of steel, are to be loaded by a
shear load of 30 KN. Determine the necessary diameter of the bars a) in single shear b) in
double shear, if the shear stress in the two materials must not exceed 50 MN/m?® and 100
MN/m? respectively.

a) Single Shear

F F
r=0 W > A=

+ For brass material

3
A=3220 _4 6006 m?
50x10

2 _ A _ [0.0006
S| r—\/; > r=,| -

r=13.8197x10°m
the diameter of the bar (d)=27.639x10% m
«» For steel material

3
A=3210" —0 0003 m?
100x10
= 22229 772x10° m
T

the diameter of the bar (d)=19.544x10% m

b) Double Shear

F F
- |::> A=
7=oa U 27
|

«* For brass materia
_ 30x10°
2x50x10°

e 0.0003 —9.772x10%m
p/a

the diameter of the bar (d)=19.544x10"° m
« For steel material

3
= 300" 5 00015 m?
2x100x10

r = [290015 6 909x10¢m
T

the diameter of the bar (d)=13.819x10° m

=0.0003 m?




Example 3: The 80 kg lamp is supported by two rods AB and BC as shown. If AB has a
diameter of 10 mm and BC has a diameter of 8 mm, determine the average normal stress in
each rod.

> F. =0

Fac xg— Fg, x€0s60=0

FBC:0-625FBA .................

> F, =0

F. ><§+ Fo. xSin60—784.8=0

Fsc=1308-1.44337Fgn  .......... )
1308-1.44337F55=0.625Fga 80x9.81=784.8N
Fga=632.38 N
Fec=395.2375 N

Fea — 632.38
Aga 7(5x107)

Opp =

6,=8.051877x10° Pa
GBA=8.051877 MPa

F .
o - Foc - 3952375

Ay  7(4x107%)2

6pc=7.863149x10° Pa
GBC=7.863149 MPa



Example 4: Shafts and pulleys are usually fastened together by means of a key, as shown.
Consider a pulley subjected to a turning moment T of 1 KN.m keyed by a 10 mmx10
mmx75 mm key to the shaft. The shaft is 50 mm in diameter. Determine the shear stress on
a horizontal plane through the key.

1KN T
<
F
@ ]
—

50mm

> M, =0
1x10° - F x0.025=0
F=40000 N

F=40 KN /
=

A Is the shaded area
_ 40x10°
‘C_
10x10°°x75%x10°3
1=53.333%x10% N/m?
1=53.333 MN/m?

Example 5: Consider a steel bolt 10 mm in diameter and subjected to an axial tensile load
of 10 KN as shown. Determine the average shearing stress in the bolt head, assuming
shearing on a cylindrical surface of the same diameter as the bolt.

A=ndt
A=nx10x10°x8x10°=0.000251327 m’
10 KN

F
T=—
A

= 10x10°
0.000251327

1=39.7888%10°% N/m?
1=39.7888 MIN/m?



Example 6: The bar shown has a square cross section for which the depth and thickness are
40 mm. If an axial force of 800 N is applied along the centroidal axis of the bar's cross
sectional area, determine the average normal stress and average shear stress acting on the
material along a) section plane a-a and b) section plane b-b.

a) section plane a-a

P
o=—
A a b
B 800 | | i;\:\ ] 800N

Oo— P e 6072 N L

40x107° x40x10°® d

b

6=500 KN/m? a

F
iy 800N 800N
F=0
=0

b) section plane b-b

Fl
d

d=—20 _=46.188 mm 60§A 800N

$in60 800N %_,

F
o F :
A

800sin60

o= - =375 KN/m?
46.188x107° x40x10

N
Il
> .M

800co0s60

1= - —-=216.50645 KN/m?
46.188x107° x40x10

AR



Example 7: Determine the total increase of length of a bar of constant cross section
hanging vertically and subject to its own weight as the only load. The bar is initially

straight.

v: is the specific weight ( weight/unit volume )

A: is the cross-sectional area

ds = 7Avdy

dy

VY

2
—T_

WA
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Example 8: A member is made from a material that has a specific weight yand modulus of
elasticity E. If its formed into a cone having the dimensions shown, determine how far its
end is displaced due to gravity when its suspended in the vertical position.

r 2y2 w(y)

wiy)= 21y

From equilibrium P(y)=w(y)

2

3 L2
2
Ay)= 5
T 2
0 3
_Pydy _ 372V
A(Y)E 2
(y) ”EzyzE
d8=Lydy
L L
5=[ds j—W
0 0 E
2
5:£
6E

'Y



Example 9: A solid truncated conical bar of circular cross section tapers uniformly from a
diameter d at its small end to D at the large end. The length of the bar is L. Determine the
elongation due to an axial force P applied at each end as shown.

2
7Z-|:d+(D_d)X}E
2 "2 2'L
_L[gﬂz_m i
EE(E_Q) 2 2 2°L] |
L'2 2
_ PL o PL L P
D dfd D d.x]| D dfd D d D d.d
Ex( - —+(-2)2 | ExC-D) o+ ———| Ex(o-2)-
7 2){2”2 2)J 7 2)[2+2 2} (2722
_ PL . PL :4PL{_ | }
? dD Dd d?*, Exz| D?*-dD Dd-d?
Ex(—---) Ex(=—---)
4 4 4 4

_ 4PL

7dDE

V¢



Example 10: Determine the smallest dimensions of the circular shaft and circular end cop
if the load it is required to support is 150 KN. The allowable tensile stress, bearing stress,
and shear stress IS (6t ainow=175 MPa, is (o) aew=275 MPa, and zy,,=115 MPa.

F
(Ob)atlow=—>

A,
150x10°

275%10°%=

A,=0.0005454 m?

_T
Ab—zdf

do= \/4Ab \/4x0.0005454
2— pry
Vs

T

d,=0.026353 m=26.353 mm <Nl
P
(Gt)allowzz
175x10°= 150x10°
A=0.0008571 m?
:%[df —(30x107?)21=0.0008571

d;=0.04462 m=44.62 mm <y

Tallow— —

A
115%10°%=

A=0.0013043 m?
1. A=tnd
0.0013043= tx7x30x107°
t=0.013839 m=13.839 mm
2. A:tTCdz
0.0013043= txnx26.353%10

150x10°

t=0.01575 m=15.75 mm <

\o

I P =150KN
‘dz,
P
$t
< 30mm
< a >



Statically Indeterminate Members:

It the values of all the external forces which act on a body can be

determined by the equations of static equilibrium alone, then the force system is statically
determinate.

P ]

™

> X
R, ‘ R, 1

A 4

A—p

g

R, R

In many cases the forces acting on a body cannot be determined by the equations of
static alone because there are more unknown forces than the equations of equilibrium. In
such case the force system is said to be statically indeterminate.

1



Example 11: A square bar 50 mm on a side is held rigidly between the walls and loaded
by an axial force of 150 KN as shown. Determine the reactions at the end of the bar and the

extension of the right portion. Take E=200 GPa.

3150KN S150KN
—[ 4 —— <
R R, le Sl N
"100mm | 150mm |
Ri+R,=150%10° .........c.ccoe. (1)
81:62
R, x100x10°° R, x150x107°

50x10°% x50x10 % x 200x10° 50x1073 x50x103 x 200x10°

0.1R;=0.15R;

From equations (1) and (2)
1.5R, + R,=150x10°

R, =60000 N
R;=90000 N

R, x150x107 60000x150%x10°°

T 50x10° x50x107° x200x10° 50x10~° x50x10~ x 200x10°

5,

0,=0.000018 m
0,=0.018 mm

VY



Example 12: A steel bar of cross section 500 mm? is acted upon by the forces shown.

Determine the total elongation of the bar. For steel, E=200 GPa.

A B C

50 KN 45KN
] —15 KN 10 KN <«— —>
“500mm | 1m T 15m
A B B
SOKN 50KN 50KN 35KN
— > < > 15KN —»
45KN & D 45kN
«— —

¢ For portion AB

_ PL _ 50x10%®x500x10°®

=== — - =0.00025 m=0.25 mm
AE 500x107° x200x10

01

¢ For portion BC

_PL _ 35x10° x1

AE T 500x10° x200x10° 00032 M=0-35mm

5,

¢ For portion CD

_PL _ 45x10%x1.5

AE 500x107 x200x10° 000072 M=0.675 mm

O3

O1=01+0,103
07=0.25+0.35+0.675=1.275 mm

YA



Example 13: Member AC shown is subjected to a vertical force of 3 KN. Determine the
position x of this force so that the average compressive stress at C is equal to the average
tensile stress in the tie rod AB. The rod has a cross-sectional area of 400 mm? and the

contact area at C is 650 mm?.

I:AB

‘T 3KN

Y

200mm

§:Fy::0

FAB+FC'3OOO:0
FAB+FC:3000 ........................... (1)

GaB—OcC

P _Fe

AAB AC
FAB — I:C

400x10° 650x10°

Fag=0.6153 Fc ... (2)
From equations (1) and (2)

Fc=1857.24 N
Fas=1142.759 N

Y M, =0
Fox200x1073-3000%x=0

y=1897:24x0.2 _ 193816 mM=123.816 mm
3000

14



Example 14: The bar AB is considered to be absolutely rigid and is horizontal before the
load of 200 KN is applied. The connection at A is a pin, and AB is supported by the steel
rod EB and the copper rod CD. The length of CD is 1m, of EB is 2 m. The cross sectional
area of CD is 500 mm?, the area of EB is 250 mm?. Determine the stress in each of the
vertical rods and the elongation of the steel rod. Neglect the weight of AB. For copper
E=120 GPa, for steel E=200 GPa.

> M, =0 C

Foox1+Fx2-200x10%x1.5=0

L
o]

_ 3 le > >«
Feo=300x10%2 Fy .............. (1) . 500mm | 500mm

F x2 Fo, x1 ’

=2x
250x107° x200x10° 500x10°° x120x10°

From equations (1) and (2) §_\ _

F,=93750 N N R ¥
Feo=112500 N R
o, = =970 _375000000 Pa

A, 250x10
os=375 MPa

Fe, _ 112500
Oco = - _

A, 500x10
5co=225 MPa
oL _ 375x10° x 2
E  200x10°

~=225000000 Pa

O, = =0.00375 m=3.75 mm



Thermal Stresses:

A change in temperature can cause a material to change its dimensions. If the
temperature increases, generally a material expands, whereas if the temperature decreases
the material will contract.

The deformation of a member having a length L can be calculated using the
formula:
Or=axXATXL

ST:E =axATxL
AE

or=EXaxAT

o Linear coefficient of thermal expansion. The units measure strain per degree of
temperature. They are (1/°F) in the foot-pound-second system and (1/°C) or (1/°K) in S
system.

AT: Change in temperature of the member.

L: The original length of the member.

ot: The change in length of the member.

Example 15: The A-36 steel bar shown is constrained to just fit between two fixed
supports when T,=60° F. If the temperature is raised to T,=120° F determine the average
normal thermal stress developed in the bar. For steel a=6.6x10° 1/°F, E=29x10° Ksi.

0.5in
fe—>

0.5in
x YT FAl v

> F, =0

FA'FB:F

6T'8|:=0

OT=aXATXL

or=EXaxAT
=29x10° x6.6x10°® x(120-60)
=11.484 Ksi

20in

AR



Example 16: A 2014-T6 aluminum tube having a cross sectional area of 600 mm? is used
as a sleeve for an A-36 steel bolt having a cross sectional area of 400 mm?®. When the
temperature is T;=15° C, the nut hold the assembly in a snug position such that the axial
force in the bolt is negligible. If the temperature increases T,=80° C, determine the average
normal stress in the bolt and sleeve. For aluminum a=23%10° 1/°C, E=73.1 GPa, for steel

a=12x10° 1/°C, E=200 GPa.

Y Y|

Y Y|

150mm

6=(y)r +()e =(3)r — ()¢

(5sI)T
[axATxL+%]b:[axATxL-%]s.

y

F x0.15
400x10°° x 200x10°

12x10°x0.15%(80-15)+

0.0052949x10°F=0.00010725

F=20255 N
_F _ 20255
""'A,  400x10°°

6,=50.637655 MPa

F _ 20255
Ay 600x10°°

sl

65=33.758436 MPa

Og1—

Yy

I:b Fsl
Initial Position
AN (3)r
] v
(Gb)r
. v Final Position
(5sl )F
F x0.15

= 23x10°x0.15x%(80-15)-

600x107® x73.1x10°



Example 17: The rigid bar shown is fixed to the top of the three posts made of A-36 steel
and 2014-T6 aluminum. The posts each have a length of 250 mm when no load is applied
to the bar, and the temperature is T;=20°C. Determine the force supported by each posts if
the bar is subjected to a uniform distributed load of 150 KN/m and the temperature is
raised to T,=80°C. For steel a=12x10° 1/°C, E=200 GPa , for aluminum a=23x10° 1/°C,
E=73.1 GPa.

300mm 300mm
Rt < >€ >
it E i(ﬁa.)T (S.)e YYVVVVVVVVVVVVVVVVYVY 150KN /m
Initial Position | 1604 ) L
6 \4 \ 4 A\ 4 1
Final Position 60mm
—> -~ 250mm
—» [ —» [
40mm 40mm

Steel Aluminur/n Steel

2. F, =0 150 0.6 = 90KN
v

2Fst+Fa|:90000 ................ (1)
O=(8st)7-(Ost) F=(Oar) T-(Sar)F 4 4 4

Fst I:al Fst

F.L F L
oaXATXL- == l4=[oaxATxL- -2
[ AE ]st [ AE ]al
F, x0.25 ) F,x0.25
12x10°°x0.25%(80-20) - — : =23x10°x0.25%(80-20) - — -
n (40%x107*)? x 200x10° Z(esox10-3)2 x73.1x10°

1.20956x107°F,-0.994718x10°F=0.000165 .......0evvevn..... (2)

From equations (1) and (2)
Fs¢=-16444.7 N

F,=122888.8 N

Yy



Example 18: The rigid bar AD is pinned at A and attached to the bars BC and ED as
shown. The entire system is initially stress-free and the weights of all bars are negligible.
The temperature of bar BC is lowered 25°K and that of the bar ED is raised 25°%K.
Neglecting any possibility of lateral buckling, find the normal stresses in bars BC and ED.
For BC, which is brass, assume E=90 GPa, a=20x10"® 1/°K and for ED, which is steel,
take a=12x10° 1/°K, E=200 GPa. The cross-sectional area of BC is 500 mm?, of ED is

250 mm>.
= E A
dM, =0
250mm
3 3_ § A B
Px600x10°-Pp,x250%x10°=0 N D
S N Lo
NN
soomm | Y Kk > | >
< > |€ >
e 250mm il 350mm
C
Ps=0.41666 Py, ........... (1) T P,
O _ Oy A A |
250 600 A l
axLxAT—M 0(><L><AT+M A, P,
rEbr _ t st § '
250 600 NP
N B’ e |
N =k o s5), A
\ - ju_bl'ss _V(_st T 5
A

P, x300x10°°
500x10°° x90x10° _

20x107° x300x107° x 25—

12x107° x250x107° x 25+

e |

Y

P, x250x10°°

250x10~° x 200x10°

250
8.333x10™" P4+26.666x10™* P,,=475x107 .....
From equations (1) and (2)
P,=15760.5 N , P4=6566.77 N

GbFLGO'S_G =31.521MPa
500x10

SFM =26.267 MPa
250x10

Y¢

600



Torsion:

Torque IS @ moment that tends to twist a member about its longitudinal axis.

When the torque is applied, the circles and longitudinal grid lines originally marked on the
shaft tend to distort into the pattern shown below.

Before deformation After deformation

Twisting causes the circles to remain circles and each longitudinal grid line
deforms into a helix that intersects the circles at equal angles. Also, the cross sections at
the ends of the shaft remain flat that is, they do not warp or bulge in or out and radial lines
on these ends remain straight during the deformation.

The Torsion Formula:

Consider a uniform circular shaft is subjected to a torque it can be shown
that every section of the shaft is subjected to a state of pure shear.

Yo



7. The torsional shearing stress.

T: The resultant internal torque acting on the cross section.
p: The distance from the centre (radial position).

J: The polar moment of inertia of the cross sectional area.

Tmax. 1he maximum shear stress in the shaft, which occurs at the outer surface.
r: The outer radius of the shaft.

J="yt
2
1="p*
32

for a hollow shaft

T, 4 4 T 4 4
J=—(r"-r")=—(D_ - D
2(0 I) 32( o] I)

Anqgle of Twist (0):

It a shaft of length L is subjected to a constant twisting moment along its
length, then the angle of twist 6 through which one end of the shaft will twist relative to the

other is:
TL \

GJ

G: The shear modulus of elasticity or
modulus of rigidity.

0: Angle of twist, measured in rad




If the shaft is subjected to several different torques or the cross sectional area or
shear modulus changes from one region to the next. The angle of twist of one end of the
shaft with respect to the other is then found from:

TL

0= za

In order to apply the above equation, we must develop a sign convention for the

internal torque and the angle of twist of one end of the shaft with respect to the other end.
To do this, we will use the right hand rule, whereby both the torque and angle of twist will
be positive, provided the thumb is directed outward from the shaft when the fingers curl to
give the tendency for rotation.

SON.m 80N.m
L 9
AB 10N.m
C
60N.m
Yv

7/0N.m



80x L, 70xLy 10xLy,
GJ GJ GJ

@mz

Power Transmission (P):

Shaft and tubes having circular cross sections are often used to transmit

power developed by a machine.

P:Txgg ,EQ:
dt dt

(0]

o: The shaft's angular velocity (rad/s).

P=Txw
In SI units power is expressed in (watts) when torque is measured in (N.m) and ®
in (rad/s).
1 W=1 N.m/s
In the foot-pound-second or FPS system the units of power are (ft.Ib/s); however
horsepower (hp) is often used in engineering practice where:
1 hp=550 ft.Ib/s
For machinery the frequency of a shaft's rotation f is often reported. This is a
measured of the number of revolutions or cycles the shaft per second and is expressed in
hertz (1 Hz=1 cycle/s), 1 cycle=2x rad, then w=2x=f
P=2nfT

Example 19: If a twisting moment of 1 KN.m is impressed upon a 50 mm diameter shaft,
what is the maximum shearing stress developed? Also what is the angle of twistina 1 m
length of the shaft? The material is steel, for which G=85 GPa.

=7 p* =7 (50x10°)* =0.6135x10° m’
32 32

; _1><103><25><1O_3
mex 0.6135x10°°

Tmax—=40.74979 MPa

YA



gL
GJ
1x10° x1

~ 85x10° x0.6135x10 °

0=0.01917 rad.

Example 20: The pipe shown has an inner diameter of 80 mm and an outer diameter of 100
mm. If its end is tightened against the support at A using a torque wrench at B, determine
the shear stress developed in the material at the inner and outer walls along the central
portion of the pipe when the 80 N forces are applied to the wrench.

T=80x200x10°3+80x300x103
T=40 N.m
SON

Tr T 2
T=— %y -
J %, 200 mm A
50y e ,

7l 4 4
J=2(D!-D; |
320 7P

y

J :3—”2[(1oox103)4 — (80x107%)*]

J=5.7962x10"° m*
e Innerwalls r=40 mm
. :E: 40x40x10°°

J  5.7962x10°
1=0.276042 MPa

e OQuter walls r,=50 mm
_ Tr, _40x50x10"°

) 57962x10°
1=0.345053 MPa

AR



Example 21: The gear motor can developed 0.1 hp when it turns at 80 rev/min. If the
allowable shear stress for the shaft is 7 ,=4 ksi, determine the smallest diameter of the
shaft that can be used.

Tr
Tallow =
J
3=yt
2
Tr
Tallow 7[—
- r4
2
2T
Tallow F
2T
r=s3
T,

allow

P=To > T-

P=0.1x550=55 Ib/s
®=80x%x27/60=8.377 rad/s

Sl

T=_°° =6.5655 Ib.ft
8.377
T=6.5655%12=78.786 Ib.in

r =3/ 2278780 _4 933 i
T x4x10

d=0.4646 in



Example 22: The assembly consists of a solid 15 mm diameter rod connected to the inside
of a tube using a rigid disk at B. Determine the absolute maximum shear stress in the rod
and in the tube. The tube has an outer diameter of 30 mm and a wall thickness of 3 mm.

e Therod
T=50 N.m
r=7.5x10°m

T d e m
J="of s "~
2

J =%(75><10*3)4

J=4.97009x10° m*

_ 50x7.5x10°°

7, =——————=75.4512 MPa
4.97009x10

e The tube
T=80 N.m
r=15x10°m

T, 4 4
J=—(r, —r
5 (0 =)

J= %[(15><10-3)4 — (12x107%)*|=46.9495x10° m*

-3
=1l 2 80x15x107 o0 o9 \ipg

T ) 46.9495%x10°°

AR



Example 23: The tapered shaft shown below is made of a material having a shear modulus
G. Determine the angle of twist of its end B when subjected to the torque.

= =
2L y 2 L

d:d1+2y:dl+(d2—d1)E

y_d,—d; _d,—d; x
" =—2 1

T T X
J(X)=——d*="[d, +(d, -d,) -]
9 32 32[ 1+ (d; —d,) L]

L Td t Tdk _Rrt, &

_‘bf(X) J,m Xy 7wl J X
’ "G —ld +(d, d)-— '[d +(d, d)—
32[1 (d, 1)L] [d, +(d, l)L]

L

32TL 1 _ 3271 1 1

6, ) [gaq gy 96, ) & 4

Rl 4
3n6(d, d) d.d°

_RTL d'+dd +d
3n6 d;.d’

Y



Example 24: The gears attached to the fixed end steel shaft are subjected to the torques
shown. If the shear modulus of elasticity is G=80 GPa and the shaft has a diameter of 14
mm, determine the displacement of the tooth P on gear A.

e Segment AC

150'TAC:O :."'(lv.\'-m P }
Tac=150 N.m 100 mim {:‘;;1}'- <
B H 0.3 1
“\.\"._, ‘4.- m
* Segment CD Trn= 130 Nm
Tie= 130 Mom -\I\-'\\.
150'280+TCD:0 1-':|_f';*_-;|||- '\II Iﬁ[l-?im_ _, "! -
TCD:13O N.m / "I'II =t B o 280 Man
e Segment DE
Tor =170N'm
'130'40+TDE:0 = /;\
vl 4(i N-m
TL
0= il
z GJ
1
0=—S'TL
GJ Z

- ! [150% 0.4 ~130% 0.3-170x0.5]

80x10° x%axlo*)“

0=-0.21211 rad

AR



Example 25: A steel shaft ABC connecting three gears consists of a solid bar of diameter d
between gears A and B and a hollow bar of outside diameter 1.25d and inside diameter d
between gears B and C. Both bars have length 0.6 m. The gears transmit torques T;=240
N.m, T,=540 N.m, and T3=300 N.m acting in the directions shown in the figure. The shear
modulus of elasticity for the shaft is 80 GPa. a) what is the minimum permissible diameter
d if the allowable shear stress in the shaft is 80 MPa?. b) what is the minimum permissible
diameter d if the angle of twist between any two gears is limited to 4°>.

Tag=240 N.m
TBC=3OO N.m
a)
1. For solid bar AB
J=£d4
32
T_TABdIZ_TABdIZ
J £d4
32
240xd /2
AT
32
4° 16x 240

7 x80x10°
d=0.02481 m
d=24.81 mm
2. For hollow bar BC

80x10° =

T T
J=—[d; —d]=—[(1.25d)* -d*
Slds —d]= 2 [a.25d)" ~d*]
Toe x1.25xd /2 Ty x1.25xd /2
J oz 4 4
—[(1.25d)" —-d
S, (1250)" ~d*]
300x1.25xd /2

80x10° = —> d°-

T 4 4
5, [1250)" —d’]

d=0.0255 m
d=25.5 mm Answer
b)
1. For solid bar AB
0 Tl
GJ

Ty=240Nm T,=540N-m T3=300N-m

16x300x1.25
7x80x10° x1.4414

Ye



gy T 240x06

180 80x10° ><£d4
32

d=0.02263 m
d=22.63 mm

2. For hollow bar BC

- 300x 0.6
180 g0, 10° xslz[(l.zsd)“ —d*]

d=0.02184 m
d=21.84 mm

d=0.02263 m
d=22.63 mm Answer

Example 26:_ The shaft is subjected to a distributed torque along its length of t=10x*
N.m/m, where X is in meters. If the maximum stress in the shaft is t, remain constant at 80
MPa, determine the required variation of the radius r of the shaft for 0<x<3 m

t=(10x2) N-m/m

T =Itdx
= J.10x2dx _10,s
3
Tr
Thax = 1
J
10,
A 3
80x10° = 3 = 80x10° = 2%
74 3ar
2

Yo



3
_al 29X 5002982x M

37 x80x10°
r=2.982 x mm
Example 26:_ The shaft has a radius 50 mm and is subjected to a torque per unit length of

100 N.m which is distributed uniformly over the shafts entire length 2 m. If it is fixed at its
far end A, determine the angle of twist of end B. The shear modulus is 73.1 GPa.

T(x)=100x

J-T(x)d i 100xdx
9 7 _3\4
073.1x10 x5(50x10 )

0

) 200 T
73.1x10° x 7(50x10°°)* | 2 |,

B 400
73.1x10° x 7(50x107%)*

0 =2.786x10"*rad

=0.01596°

1



Statically Indeterminate:

TA'T+TB=O
TA +TB:T

BA/B:O

Talac _ Telec
GJ GJ

If T,>T,

'TA-T2+T1'TB=0

_TBL:I. + (I-A +T2)|—2 + TAL3

GJ GJ GJ
Ty
o T, B\
Th 2 A
e
N
hH+ T2

=0

v

ih




Example 27: The solid steel shaft shown has a diameter of 20 mm. If it is subjected to the
two torques, determine the reactions at the fixed supports A and B.

500 N-m_,ffw
F o -

oy |

-Tg+800-500-TA=0

TB+TA:3 00 o, (1)

—Tg x0.2 N (T, +500)x1.5 +TA x0.3

GJ GJ GJ 0
-0.2Tg+1.5Ta+750+0.3Ta=0
1.8TA0.2T5=-750 .vveeeeeeeeeeeeeee e, )
Ta=-345 N.m
Te=645 N.m

YA



Example 28: The shaft shown below is made from steel tube, which is bonded to a brass
core. If a torque of T=250 Ib.ft is applied at its end, plot the shear stress distribution along a
radial line of its cross sectional area. Take G411.4x10° ksi, G,,=5.2x10° ksi.

T=250 Ib-ft

250 Ib-ft

T+ To=250%12=3000 lb.in............. (1)
0=05=0pr

T,L ~ T, L
11.4x10° x%[(l)“ ~(0.5)*] 5.2x10° x%[(1)4 —(0.5)*]
Tst:3288Tbr ............................ (2)

From (1) and (2)
T4=2911 Ib.in=242.6 Ib.ft
T,,=88.5 Ib.in=7.38 Ib.ft

88.5x0.5 .
(Tbr)max = T . =451 pSI

—(0.5

~05)
(i = o <1977 s

E[(1)4 -(0.5)"] e 0.0867(10%) rad
(Tst)min = T 291105 =988 pSI 1 in.

E[(1)4 -(0.5)"]

0.51in
Shear—stress distribution Shear—strain distribution
y=fo M1 _ 98 586710 rad © @
G 52x10° 11.4x10

Y4



Torsion of Solid Noncircular Shafts:

Shape of cross section Tmax 0
X 4.81T 7.1TL
a Square 2 a'G
Y
a . 20T 46TL
A Equilateral = G
triangle
a
b%@ _ 2T (a% +b?)TL
b Ellipse ab? T abG
DR

Example 28: The 2014-T6 aluminum strut is fixed between the two walls at A and B. If it
has a 2 in by 2 in square cross section and it is subjected to the torsional loading shown,
determine the reactions at the fixed supports. Also what is the angle of twist at C. Take
G=3.9x103 ksi.

Ta-40-20+T5=0 Pt

TatTe=60 ..o, (1)

N 200b

6 A/B:O =g ft - 4

ft

7.1TL
e =250

70T, x12x2x12  7.1(T; —20)x12x2x12  7.1Ty x12x2x12 _
2% x3.9x10° 2% x3.9x10° 2% x3.9x10°




From equations (1) and (2)

Tg=26.666 Ib.ft
Ta=33.333 Ib.ft

7.4T,L

Oc = a'G

_ 1.1x33.333x12x2x12

)
¢ 2% x3.9x10°

0:=0.001092 rad

0:=0.06258°

Thin walled tubes having closed cross sections:

Shear flow(q): is the product of the tube's thickness and the average shear stress. This value
Is constant at all points along the tube's cross section. As a result, the largest average shear
stress on the cross section occurs where the tube's thickness is smallest.

The forces acting on the two faces are dFa=ta(tadx) , dFg=1g(tgdx), these
forces are equal for equilibrium, so that:

’EAtA:’CBtB
0=Tavgt

&)



Average shear stress(tayg):

The average shear stress acting on the shaded
Area dA=tds
dF=TadA=T,,4tds
dT=dFxh=t,4tdsxh
T:Ta\,gtj' hds

Area of triangle dAm=% hds
hds=2dA,,

_ T
Tavg= —ZtAm

Tavg. 1€ average shear stress acting over the thickness of the tube.

T: The resultant internal torque at the cross section.

t: The thickness of the tube where 1,4 is to be determined.

A..: The mean area enclosed within the boundary of the center line of the tube thickness.

T
2,

O=Tavgt=

Angle of Twist(0):

_TL gds
ANGY t

¢y



Example 29: The tube is made of C86100 bronze and has a rectangular cross section as
shown below. If its subjected to the two torques, determine the average shear stress in the
tube at points A and B. Also, what is the angle of twist of end C? The tube is fixed at E.

Take G=38 GPa.

35 Nam
60-25-T=0 B—F=
T=35 N.m 25 N ; '}.

LN N
< T !
An=(40x107°-5x10)(60x10°-3x107%) \ B,
=0.001995 m? NG
l'!r”_.\'-m
_ T _ 35
"ATOtA.  2x5x10° x0.001995
. "
tA=1.7543859 MPa |5} 5\
57 mm ‘:: ﬁ-"-J-'E!-.-lm
35 “L f
TB: = e ‘l!"_-‘.‘.__."-_-'_'“-"‘ ._:il
2tA,  2x3x107°x0.001995
15=2.9239766 MPa C3smm
TL ds
=2 an Gt
-3 -3
o= 60><02.5 9 [2X35><10_3 +2X57><1(L |
4x(0.001995°? x 3.8x10 3x10 5%10
35x1.5 35x10°° 5 57x10°°

2
¥ (00019952 x3.8x10° 1 3x10° "2  5x10° )
0=0.0062912 rad

¢y



Example 30: A thin tube is made from three 5 mm thick A-36 steel plates such that it has a
cross section that is triangular as shown below. Determine the maximum torque T to which
it can be subjected, if the allowable shear stress is 7y,,=90 MPa and the tube is restricted
to twist no more than #=2x10" rad. Take G=75 GPa.

/ y
200 mm / i
{ .o S A

200 mm
P
T R

200 mm

Sy

=% (200x10%)x (200x107® 5in60)=0.01732 m>

£=0.005 m
T - T =90x10°
2'[Am 2x5x%x107°%x0.01732

T=15.588 KN.m

Tallow—

TL ¢ds

T4NG Tt

Tx3 200x10°°

2x107%= [3x e
5x10

~ 4x(0.01732)% x 75x10°

T=500N.m <

]

123



Thin Walled Cylinder, Thin Walled Pressure VVessels:

Cylindrical or spherical vessels are commonly used in industry to serve as boilers
or tanks. When under pressure, the material of which they are made is subjected to a
loading from all directions. In general "thin wall" refers to a vessel having an inner radius
to wall thickness ratio of 10 or more (r/t> 10)
1. Cylindrical Vessels:
Consider the cylindrical vessel having a wall thickness t and inner radius r as
shown below. A pressure p is developed within the vessel by a containing gas or fluid,
which is assumed to have negligible weight. -

The stresses set up in the walls are:
a. Circumferential or hoop stress

2[o4(tdy)]-p(2rdy)=0 o
_pr 5
t

0,

A
il *'}'"i:TT_T_'L
| RN
A

=
=

b. Longitudinal or axial stress

o,(2nrt)-p(nr?)=0

r
o, =

c. Circumferential or hoop strain
& = E(O-l —vo,)
d. Longitudinal strain

1
&, :E(O_z —vo,)

¢0



e. Change in length

The change in length of the cylinder may be determined from the
longitudinal strain.
Change in length=longitudinal strainxoriginal length

OL=g,L.= % (o, —vo,) L

sL=LC -2l
2tE

f. Change in diameter

The change in diameter may be found from the circumferential change.
Change in diameter=diametral strainxoriginal diameter
Diametral strain=circumferential strain

dd= Sldzé(al -vo,)d

=P n_
od 2tE(2 v)d

g. Change in internal volume
Volumetric strain=longitudinal strain+2diametral strain

&= &1+2 Slzé(az —vo,) +2%(61 —-vo,) diametral strain

8\,2%(02 —vo, + 20, - 2vo,) \ \ | longitudinal strain

E 2t t t t

— pr
&=——(0B-4
v ZtE( V)

diametral strain

change in internal volume=volumetric strainxoriginal volume
oV= gV

Sv=_Lr G-4)V
2tE

1)



2. Spherical Vessels:

Because of the symmetry of the sphere the stresses set up owing to internal
pressure will be two mutually perpendicular hoop or circumferential stress of equal
value and a radial stress.

o1(2nrt)-p(nr?)=0

o B8
2t

pr

G:O_ =

=17 0

Change in internal volume

change in internal volume=volumetric strainxoriginal volume
volumetric strain=3hoop strain

P | _ 3o _3pr
&= 8173 (0, -vo) —?l(l—v)—%(l—v)
ov= gV
oV =m(1—v)v
2E

1A%



Cvlindrical Vessels with Hemispherical Ends:

r=d/2

a) For the cylindrical portion

o, = ? hoop stress

C

c,= Pr longitudinal stress
1 1 Pr Pr
& :E(Gl_vaz):E(E_VZ_tc)
g=—L (2-v) hoop strain
2t .E
b) For the spherical ends
_ P hoop stress

917

S

1 o
& :E(O-l —VO'Z):El(l—V)

— pr ;
= 1— hoop strain
€1 ot E( V) p

S

Thus equating the two strains in order that there shall be no distortion of the
junction.

pr _ pr
Pn_ny=P o
e el

EA



Example 31: A thin cylinder 75 mm internal diameter, 250 mm long with walls 2.5 mm
thick is subjected to an internal pressure of 7 MN/m? Determine the change in internal
diameter and the change in length. If in addition to the internal pressure, the cylinder is
subjected to a torque of 200 N.m find the magnitude and nature of the stresses set up in the
cylinder.E=200 GN/m?, v=0.3.

=P
od HE (2-v)d

7x10° ><E><10_3

od=

= = 5 [2-0.3]x 75x107°°
2x25%x107° x200x10

80=33.468x10"° m=33.468 pm

sL="PC 1-20)L
2tE

7><1o6><E><10*3

SL= 2 [1-2x0.3]x 250x10°°
2x2.5x107 x200x10

8L.=26.25x10"° m=26.25 um

7><106><E><10*3
_pr_ 2

t 25x107°
51=105%10° N/m?=105 MN/m?

0,

7><106><§><10*3
pr_ 2

2t 2x2.5x107°

o, =

6,=52.5x10° N/m?=52.5 MN/m?

Tr Tr _ 200x40x10°®

rT=—=

! %[rg‘—rﬁ] %[(40x10_3)4—(37.5><10_3)4]

1=8.743862 MN/m?

¢9



Example 32: A cylinder has an internal diameter of 230 mm, has walls 5 mm thick and is 1
m long. It is found to change in internal volume by 12x10° m® when filled with a liquid at
a pressure p. If E=200 GN/m?and »=0.25, and assuming rigid end plates, determine a) the
values of hoop and longitudinal stresses b) the necessary change in pressure p to produce a
further increase in internal volume of 15%.

=Prs_
a) oV oE G-4)V
p><@><10_3 230
12x107°= _23 -[6-4x0.25]x 7 x (——x107°)* x1
2x5x107° x 20010 2
p=1.255763 MN/m’

or 1.255763x10° ><2§’0><10‘3
o, =—= )
t 5x10
5,=28.882549 MN/m?
230

1.255763x10° x ———x107°
pr_ 2

O, =
2ot 2x5x1073

6,=14.4412745 MN/m?

b) 8v=1.15x12x10°=13.8x10° m’

Sv=_Lr 5-4v)V
2tE
p x 230 x107

13.8x10°= ?3 5 [5—4><O.25]><7r><(@xlO*g)2 x1
2x5x107 x200x10 2

p=1.444128 MN/m?

Necessary increase=1.444128-1.255763=0.188365 MN/m?



Vessels Subjected to Fluid Pressure:

It a fluid is used as the pressurization medium the fluid itself will change in
volume as pressure is increased and this must be taken into account when calculating the
amount of fluid which must be pumped into the cylinder in order to raise the pressure by a
specific amount.

The bulk modulus of a fluid is defined as:
Volumetricstress

Volumetricstrain
volumetric stress=pressure p
changeinvolume _ oév
originalvolume v

bulk modulus k=

volumetric strain=

=
Y

change in volume of fluid under pressure= iv

extra fluid required to raise cylinder pressure by p
=L G-V

extra fluid required to raise sphere pressure by p

—_3pr

pv
1-v)v+—
2tE d=v) k

o)



Example 33: a) A sphere 1m internal diameter and 6 mm wall thickness is to be pressure
tested for safety purposes with water as the pressure medium. Assuming that the sphere is
initially filled with water at atmospheric pressure, what extra volume of water is required
to be pumped in to produce a pressure of 3 MN/m? gauge? For water k=2.1 GN/m?
b) The sphere is now placed in service and filled with gas until there is a volume change of
72x10°® m®. Determine the pressure exerted by the gas on the walls of the sphere. c) To
what value can the gas pressure be increased before failure occurs according to the
maximum principal stress theory of elastic failure? E=200 GPa, »=0.3 and the yield stress
Is simple tension=280 MPa.

a) extra volume of water= %(1— V) V+ %

6 4 3
3x3%x10% x0.5 3x10° x—7(0.5)

:2x6x104x200x16
=0.001435221 m®

4
1-0.3)x =~ 7(0.5)° +
(1-0.3)x57(035) 2.1x10°

—3Pr
b) oV AE @-v)v

79%107%= 3px0.5
2x6x107° x200x10°
p=0.31430827 MN/m?

a—QQXgﬁmsf

o, = Z—tr o,=Yield stress for maximum principal stress theory

px0.5

280x10°= =2
2x6x10

p=6.72 MN/m?

oY



Shear and Moment Diagram:

Beams are long straight members that carry loads perpendicular to their

longitudinal axis. They are classified according to the way they are supported, e.g. simply
supported, cantilevered, or overhanging.

e
e

e O o

Simply supported beam overhanging beam

Cantilevered beam

Types of Loading:

L_oads commonly applied to a beam may consist of concentrated forces(applied at
a point), uniformly distributed loads, in which case the magnitude is expressed as a certain
number of newtons per meter of length of the beam, or uniformly varying loads. A beam
may also be loaded by an applied couple.

100N

l (point load)
| (concentrated force)

oy



10N /m 5N /m-+
YYVYYYIVYYYIVIYIYIYY | e
[ [ J
> py >| O ke - >| ( )
Uniformly distributed load Uniformly varying load

Shearing force and bending moment diagrams show the variation of these
quantities along the length of a beam for any fixed loading condition. At every section in a
beam carrying transverse loads there will be resultant forces on either side of the section
which, for equilibrium, must be equal and opposite.

Shearing force at the section is defined as the algebraic sum of the forces taken on
one side of the section. The bending moment is defined as the algebraic sum of the
moments of the forces about the section, taken on either side of the section.

Sign Convention:
Forces upwards to the left of a section or downwards to the right of a section are
positive. Clockwise moments to the left and counter clockwise to the right are positive.

2 CIE D" "G

Procedure of Analysis:
The shear and moment diagrams for a beam can be constructed using the
following procedure:-

1. Determine all the reactive forces and couple moments acting on the beam, and
resolve all the forces into components acting perpendicular and parallel to the beam's
axis.

2. Specify separate coordinates x having an origin at the beam's left end extending to
regions of the beam between concentrated forces and/or couple moments, or where
there is no discontinuity of distributed loading.

3. Section the beam perpendicular to its axis at each distance x, and draw the free body
diagram of one of the segments. Be sure V and M are shown acting in their positive
sense, in accordance with the sign convention given as above.

The shear is obtained by summing forces perpendicular to the beam's axis.
The moment is obtained by summing moment about the sectioned end of the
segment.

o s

o¢



6. Plot the shear diagram(V versus x) and the moment diagram(M versus Xx). If
numerical values of the functions describing V and M are positive, the values are
plotted above the x-axis, whereas negative values are plotted below the axis.

Example 33: Draw the shear and moment diagrams for the beam shown below.

L/2 L/2

> F =0

A=0

> M. =0
PxL/2-AyxL=0
A,=P/2

> F, =0
C,+A,-P=0
C,=P/2

e Segment AB
Y F, =0 [ v ) m

P \/= N
P -V=0 P X i
V= E

2

> M =0

M-E xx=0
2

P
|
e Segment BC WV "

> F, =0

N | o

00



P pv=0
2

V:_E
2
> M
|V|-£><x+P(x-E)=0
2 2
Mzg(L'X) P l
| B |

=r—

4

B.M. diagram




Example 34: Draw the shear and moment diagrams for the beam shown below.

10KN 20KN

2m

4m

30KN

2m |

A

a Y

&
<
4

<
P

Y

< rl

A B C D

M |«
°
=

3?

F,=0

> M. =0

8m

-A,x12+10x10-20x8+20x6

+30%2=0
Ay=10 KN
Z F,=0
10-10+20-20-30+F,=0
F,=30 KN
e Segment AB 0<x<2

> F, =0
10-V=0
V=10 KN
> M =0
M-10xx=0
M=10x

e Segment BC 2<x<4

Z F, =0
10-10-V=0
V=0
> M =0
M-10x+10(x-2)=0
M=20 KN.m

e Segment CD 4<x<6

> F, =0

10KN 20KN 30KN

U < A
m A
A-n

Al B C

A
Y
A

A, 4m 8m y
20KN

10KN

oy



10KN
10-10+20-V=0
e | Ik
M-10x+10(x-2)-20(x-4)=0 20 KNT |
M=20(x-3) X |
10KN

e Segment DE 6<x<10

Z Fy -0 10KN 20KN
10-10+20-20-V=0 l
V=0
M <0 | W )M
M-10x+10(x-2)-20(x-4)+20(x-6)=0 20 KNT |
M=60 KN.m "]

10KN

e Segment EF 10<x<12

> F, =0

10-10+20-20-30-V=0

V=-30 KN

> M =0
M-10x+10(x-2)-20(x-4)+20(x-6)

+30(x-10)=0
|\/|=30(12-X) 10KN 20KN 30KN

S
“ |

20 KNT
X

»
»

10KN

oA



S.F Diagram

B.M. Diagram

>
L
A g

10KN V/AI




Example 35: Draw the shear and moment diagrams for the beam shown below.

Yy vy v vy vy vy vy vyy”

wLE-AL=0
2

wL

)

> F, =0

WL 1B,-wL=0
2

wL
B,=—
Y2

> F, =0

WL wx-V=0
2

V=-w(x- %)

> M =0

M-WTLX+WX(§)=O

Mzg (xL-x%)

Maximum moment occur when dd—M =0
X

dx 2

L-2x=0

X =—
2

Location of maximum moment




B

L
2

W

YYYVIVy vy vy vvvvyy”

A

A

A

L/2

S.F Diagram
B.M Diagram

1)



Example 36: Draw the shear and moment diagrams for the beam shown below.

=

A
Y

Y
A
Y

Ma-—2 §L=0 ’ —L

w,L° :
A
Wk wox® g ’ <2

2 2L
W X2
V=—(L-— 2
2 ( L)

_w,L Maximum shear force occur at v _ 0
Vmax— dx

d_V:_WOX 0
dx L
x=0

> M =0

wl?> wbL = wx®
o - - X+ Ly=0

0 X—

2 2L 3

1y



(3L%x-x*-2L%)

WO
6L
max—

M
M

A 4

S.F Diagram

w, L2
3

1y



Example 37: The horizontal beam AD is loaded by a uniform distributed load of 5 KN per
meter of length and is also subjected to the concentrated force of 10 KN applied as shown
below. Determine the shearing force and bending moment diagrams.

> F, =0 10KN

A=0 By
2 M,=0 Ar/\¢¢¢¢¢¢¢‘¢¢¢$¢¢¢w[)

C,x3-30%2=0 _
Cy:20 KN WTLTT\ WQW

F, =0 < >l >l >
Z ’ 2m | im r im

Ay+20-30=0
A,=10 KN 20 KNH 10KN

5KN/m

e Segment AB 0<x<2

2.F, =0 SKN/m}™ L_y ““““ :
105x-v=0  pee Y v )M
V=10-5x A

Z M=0 X :I
|v|-10x+5x§ =0 10KN

|v|:5x(2-§)

e SegmentBC  2<x<3 10KN

2F, =0 5KN /mi ™"~ i """""" '
10-5x-10-V=0  peeeeeeee YW ARY
V='5X A

Z M = O X >
|v|-10x+5x§ +10(x-2)=0 10KN

M=20-> X2
2

e Segment CD 3<x<4

¢



_______________ |z
sz:o S5KN/m: — ;:
10-5x-10+20-V=0 | ] v) M
V=20-5x R

M=0 X i
z y 10KN 20KN
M-10x+5xE +10(x-2)-20(x-3)=0
M=-40+20x- g x? 10KN

By 5KN /m
S EEEEEEEEEEEEEER =
A A C
< >l > >
2m im im
10KN 20 KN
10KN E E E
5KN I

S.F Diagram

—10KN

B.M Diagram ' : |

10



Example 38: A beam ABC is simply supported at A and B and has an overhang BC. The
beam is loaded by two forces P and a clockwise couple of moment Pa that act through the
arrangement shown. Draw the shear force and bending moment diagrams for beam ABC.

|

o Q

Y .
-y
A

Y

> M, =0
-Pa+R¢(2a)-Pa=0
RC:P
> F, =0
Rp+P-P-P=0
RD:P
d>M, =0
Rg(2a)-Pa-P(3a)=0
RB=2P
> F, =0
Ra+2P-P-P=0
RA:O

e Segment AD 0<x<a
> F, =0
V=0
> M =0

M=0

e Segment DB a<x<2a

A
QD

Pa

A 4

A\ 4

"



> F, =0

V-P=0

V=-P

z M=0 P

M+P(x-a)=0 l

M=P(a-x) lD
e SegmentDB  2a<x<3a f

X
Z o 2P
2P-P-VV=0
V=P
> M =0
M+P(x-a)-2P(x-2a)=0 i l

M=P(x-32)

o)
| le—

R

S.F. Diagram

B.M. Diagram




Graphical Method for Constructing Shear and Moment Diagram:

v —w(X)

w(x)
Yvy v
°

Slope of shear diagram at each point=-distributed load intensity at each point.

Slope of moment diagram at each point=shear at each point.

am _y,
dx

e When the force acts downward on the beam, AV is negative so the shear will jump
downward. Likewise, if the force acts upward, the jump will be upward.

e |f moment M, is applied clockwise on the beam, AM is positive so the moment
diagram will jump upward. Likewise, when M, acts counterclockwise, the jump will

be

downward.

. dM _
Loading Shear Diagram jl—{—:’/ =—w Moment Diagram T = Vv
P w=0 Vo
E \%
Y, = :
- l Mz Vl } W 0 // M:
- — ’ﬂlD b M,
L Va Pov;n;:):‘iiz:zeifoﬁ\u‘ietov‘;o Constant slope changes from V| to V,.
jum : i 5.
%
v -0 M
@ My M, ] v
b 4 / M, / »
1. l\u ' % v :
¥ v No change in shear since slope w = 0. Constant positive s]op_)e. Counterclockwise
M, causes M to jump downward.
Vs
%o =Wo /
v = \%
M M 1
> 4 I l I I 2 Vi M,
e > v, M,
Vi Va Constant negative slope. Positive slope that decreases from V, to V5.
Wo v2
—M’l
v, W ” ) \\ /’ .
Ay i 1 2
V2 M,
¥ Vs Negative slope that increases from —w to —w,. Positive slope that decreases from V; to V5.
wy e
—w 2
W)
M, M, v, —W» v, M,
TAY v l) o
SRR RO 4 =
= 1
Vi V, Negative slope that decreases from —w to —w5. Positive slope that decreases from V, to Vs,

TA




Example 39: Draw the shear and moment diagrams for the beam shown below.

A

2y
»

At x=0
Atx=L V

)
)

1
)
o

Jiiiiiiii

Atx=0 M=-PL
Atx=L M=0

14



Example 40: Draw the shear and moment diagrams for the beam shown below.

dM, =0
B,*5.5-10-60x2=0
B,=23.63 KN

> F, =0
23.63+A,-60=0
A,=36.37 Kn

> F, =0

A=0

X  4-X
36.37 23.63
23.63%x=36.37%4-36.37x
X=2.4246 m
Maximum bending moment occur
when V=0, at x=2.4246 m

15KN /m
10KN.m
VYVVVVVVVVVVYVYVYYY Vhr \
AVe .) B
‘/ VTQY“
|< >|< >|< >|
| 4m | O.5m| Im |
15KN /m
10KN.m
YYVvYYVyY V‘ YYvvy VL VYYVVVYYVYY \
A o)
A ( T
A, B,
< >|< >|< >|
Am l05m|  1m |
15KN /m
10KN.m
YYVVVYY V}VV VVVVVVYYY
[ )
A
36.37KN T23.63 KN
< >|< >|< >|
4m | O.5m| Im |
36.37KN i i i i
L 4—x | ; !
NZ 7/
| 7/
i —23.63KN: 1 —23.63KN
l i 2548KN.m __:
! | 23.665KN.m

13.665KN.m



Example 41: Draw the shear and moment diagrams for the beam shown below.

48KN /

> M. =0

80-Rgx6+30%7.5+144x4=0

Rg=146.83 KN

> F, =0
Rc+146.83-30-144=0
Rc=27.17 KN

° ) *\.
A Bg 2/80KN.m
777
J 3m | 6m |
< > g
30KN 144KN
=M eam | T
— e T
[ ]
T ~BOKN.m 4
RB Rc

A48KN /m

* )

A

146.83KN

3m

B T ~/80KN.m

6m

27.17KN

AC

Maximum bending moment occur when

V=0

For segment 3<x<6
V=116.83+4(x-3)%-48(x-3)

0=116.83+4(x-3)*48(x-3)
x2-18x+74.2075=0
X=6.39375 m from left end

47.187 KN,

= I

—45KN.m

\A

_125KN.m



Example 42: Draw the shear and moment diagrams for the beam shown below.

FIII]|| “|“ 3KN/m
A 4

Z F,=0 A ’ B ¢
A.=0 SSNSNNSN VVVQVW
Z):(M 0 P 3m \|, 3m | 3m R
A= " 1 1 7
ByX6-9><7=0
By=10.5 KN 9KN
ZFY =0 "__Z_r_n_—ESKN/m
Ay+10.5-9:O B ——— v |
Ay:-1.5 KN >
A\ |
3KN/m
1.5KN I
10.5KN

; ~11.25KN.m ;

\Al



Stresses in Beams:

Pure bending refers to flexure of a beam under a constant bending moment.

Therefore, pure bending occurs only in regions of a beam where the shear force is zero.
Nonuniform bending refers to flexure in the presence of shear forces, which means that the
bending moment changes as we move along the axis of the beam.

7
ol
—

B V///ALF. Diagram

//////%/
/ \ B.M. Diagram

Nonuniform bending Pure bending

A
Y

A

Assumptions:

The beam is initially straight and unstressed.

The material of the beam is perfectly homogeneous.

The elastic limit is nowhere exceeded.

Young's modulus for the material is the same in tension and compression.

Plane cross-sections remain plane before and after bending.

Every cross-section of the beam is symmetrical about the plane of bending i.e. about
an axis perpendicular to the N.A.

7. There is no resultant force perpendicular to any cross-section.

ok wnE

If we now considered a beam initially unstressed and subjected to a constant bending
moment along its length, i.e. pure bending as would be obtained by applying equal couples
at each end, it will bend to a radius p as shown below.

A



As a result of this bending the top fibers of the beam will be subjected to
compression and the bottom to tension. Its reasonable to suppose, that somewhere between
the two there are points at which the stress is zero, these points is termed the neutral axis.
The neutral axis will always pass through the centre of area or centroid.

The length L; of the line ef after bending takes place is:

L1=(p-y)do

do=2
P

L=(1-L)dx
o

The original length of line ef is dx

y
1-+)dx—-d
I_l—originallength:( p) X

originallength dx

Strain(ey)=

D <

ex=-Ky

where Kk is the curvature.

The longitudinal normal strain will vary linearly with y from the neutral axis. A
contraction (-g) will occur in fibers located above the neutral axis (+y), whereas
clongation (+¢,) will occur in fibers located below the neutral axis (-y).

y y

€1

sz'( Cl ) Emax
1

By using Hook's law o,=Eg,
ox=-Eky=- Ey
Y2

A&



(&) i

ze'( Cl ) O'max
1

Normal stress will vary linearly with y from the neutral axis. Stress will vary from
zero at the neutral axis to a maximum value o, a distance c; farthest from neutral axis.

dA

C1 =

N.A.

dF=c,dA
M:jde :j(odi)y

:j(—clamax)ydA
A 1
M= s [ y2da
1 A

[y?dA=I" moment of inertia
A

_ Mc,

O_max I

Omax. The maximum normal stress in the member, which occurs at a point on the cross
sectional area farthest away from the neutral axis.

M: The resultant internal moment.

I: The moment of inertia of the cross sectional area computed about the neutral axis.

ci: The perpendicular distance from the neutral axis to a point farthest away from the
neutral axis, where oy acts.

Yo



C]

_ Mc, _ Mg,
o=t e
ci=-M 5,=M

1 Sl ’ 2 32
Slzl_ ’ 82: I_

G, C,

The quantities S; and S, are known as the section moduli of the cross sectional
area.

Example 43: A simple beam AB of span length L=22 ft supports a uniform load of
intensity q=1.5 k/ft and a concentrated load P=12 k. The uniform load includes an
allowance for the weight of the beam. The concentrated load acts at a point 9 ft from the
left hand end of the beam. The beam is constructed of glued laminated wood and has a
cross section of width b=8.75 in and height h=27 in. Determine the maximum tensile and
compressive stresses in the beam due to bending.

P =12k
9 ft

A
Y

Y VVVVVVVVVVVVYVYVYY V‘

22 ft

A
—

v



12k 33k

> M, =0
Byx22-12x9-33x11=0
B,=21.409 k

> F, =0
Ay+21.409-12-33=0
Ay=23.591 k

P =12k
9 ft

A
Y

VY VVVVVVVVVVVVYYVYYVYY V‘

23.591k 21.409k
23.591k

10.091k

S.F. Diagram

—1.909k
Maximum bending moment
Mmax=151.569 k.ft E - 21409
=151.569x12 1 151.569Kk. ft :
=1818.828 ksi !
B.M. Diagram

A%



€1=C,=13.5 in
Mc,
|
A A
bh' _8.75x(27)° _ 1355 15750 c,
12 12
_1818.828x10°x13.5 0

o1= C
143521875 2
=-1710.8317 psi Y Y

1818.828x10°x13.5

143521875 8.75in
=1710.8317 psi

o1——

27in

N
A

(o)1

Example 44: The simply supported beam has the cross sectional area shown below.
Determine the absolute maximum bending stress in the beam and draw the stress
distribution over the cross section at this location.

lZOmm
| | 5KN/m

A
T \ 4 VL VVVVYVVVYVYYVYYVYYVYY VL \ A

300mm ¢

—» |e— 20mm WQW

lZOmm

A
Y

= [
Yy L
—>
«—
(O8]
o
A
=z

250mm

YA



dM, =0
Byx6-30x3=0
B,=15 KN

Z F,=0
A,+15-30=0
A~=15 KN

Maximum bending moment
Mmax=22.5 KN.m

C1=C,=170 mm
3
|1: —bh + Ad?
12

= 250x107°% x (20x107%)?
12

1,=128.16667x10° m*

1,=1,=128.16667x10° m*

= bh® _ (20x107°) x (300x10°°)*

SKN/m

y

A

y VVVYVY VL VVVYVYVYY

15KN

15KN

300mm

N.A

\
)

=45x10° m*

2712 12

250mm

+(250x107° x 20x107*) x (160x10%)?

|= 1+ |+ 1,=128.16667x10°+128.16667x10°+45x10°

1=301.333%x10° m*

_Mc, _225%10°x170x107°

max—

=12.693598 MPa.

| 301.333x10°®

\&)



oy}
AAAA

— My,
|
_ 22.5x10% x150x10°
301.333x10°°
=11.200233 MPa.

]2}

Example 45: The beam shown below has a cross section of channel shape with width
b=300 mm and height h=80 mm, the web thickness is t=12 mm. Determine the maximum
tensile and compressive stresses in the beam due to uniform load.

300mm

Y

A

32KN/m

A
YVYVYVYYVYY VL YVYVYVYVYVYYVYYVYY V} VVYVYVYYVYYVYY
80mm °

— |[—12mm A Bg 2

A

—
4
N

3m
> M, =0

B,x3-14.4x2.25=0

B,=10.8 KN

> F, =0

A,+10.8-14.4=0 A
A,=3.6 KN g T
> F =0

A=0 A, B

>

32KN/m



3.6 KN T10.8 KN

3.6 KN

M;=2.025 KN.m
M,=3.6 KN.m
Y. = z yA
T SA 2 0
1 3 80mm
—»  |«—12mm
Y
No. of Area A(m?) y (m) yA(m®)
1 960x10°® 40x10° 38400x10°
2 3312x10° 74x10°3 245088x107
3 960x10°® 40x10° 38400x107
Y A=5232x10" > yA=321888x10"
-9
y, = 2188810 " _g9 57x10°m
5232x10 300mm
Y=61.52 mm < >
c, =18.48 mm:: 1
c, =6152mm| —» ([«—12mm s0mm
3 A 4 4
|1= m +Ad?
12

A



-3 -333
1,= 123107 (B0x107)" | 960x10x(21.52x10%)=0.95658x 10" m*
l,= 1,=0.95658x10° m*

_bh®
l,=—— + Ad
12
-3 -333
= 276x10 1(;2“0 ) +3312x10°%(12.48x10°)2=0.55558x10°® m
1= 13+ I+ 1;=2.46874x10° m*
3 -3
(), = M.c, _ 2.025x10 x61.5%6><10 _ 50462179 MPa
I 2.46874x10
,C,  3.6x10°x18.48x10°°
| 2.46874x10°
(6)m=50.462179 MPa
_Mjc,  2.025x10°x18.48x10°°
| 2.46874x107°
3 -3

(©.), = M,c, _ ~3.6x10 XGLSZ::LO _ _89.71054 MPa
| 2.46874x10

(Go)max=-89.71054 MPa

P

(), =M _ 26.94815 MPa

=-15.158339 MPa

(Gc)l =

Composite Beams:

Composite beams are made from different materials in order to efficiently carry a
load.

&
Stiff
material

SO
Less stiff
material

Normal stress in material 1 is determined from c=E;¢

Normal stress in material 2 is determined from c=E,¢
dA=dydz

The force dF acting on the area dA of the beam is

dF=cdA=( E;&)dydz

If the material 1 is being transformed into material 2
b2=nb

AY



Beam transformed to material (2)

dF = &dA =( Exe)ndydz
dF=dF
( E1e)dydz=( E»e)ndydz
n=F1

E2

n: transformation factor (modular ratio).

If the material 2 is being transformed into material 1

.= n'b

Beam transformed to material (1)

b,=nb where ﬁ:E
El
For the transformed material

o=-No

AY



Example 46: A composite beam is made of wood and reinforced with a steel strap located
on its bottom side. It has the cross sectional area shown below. If the beam is subjected to a
bending moment of M=2 KN.m determine the normal stress at point B and C. Take E,=12
GPa and E,=200 GPa.

g@

st
150 mm
n="2 _006
200 Od

b, =nxb, we
b, =0.06x150=9 mm /tzo mm

\/

\y

C 4’
9 mm
9mm
<> 7] 3
— A > B’
2
150 mm
150 mm
v
“A
J 1 20 mm
1 ’ 20 mm

A
Y

A /|
150 mm ¢ | 150 mm



No. of Area A(m®) y (m) yA(m®)
1 3000x10° 10x10°3 30000x107°
2 1350x10° 95x10° 128250%x107°
> A=4350x10"° > yA=158250%10"
9 mm
y - D YA —5— —5
C ZA
y. = 158250><103‘9 _36370x10° m € =133621mm 150 mm
4350x10™
=36.379 mm N A ¥
1=1;+1, 1 y
- b_h3 L Ag? ¢, =36.379 mm 1 20 mm
1 12 Y Y
-3 -333
|, = 190107 x(20x107)" | 556,106  (26.379x10°7)? < >
12 150 mm

1,=2.187554x10° m*

3
I, = bh” | Ad?
12
|- 9x107° x (150x107%)®
2 12
1,=7.170419x10° m*
1=9.35797x10° m*

+1350%x107° x (58.621x107%)?

3 -3
S 2x10 ><133.621:10 _ 28557689 MPa
9.35797x10
Og = nx Opg
oy =0.06x (—28.557689) = —1.71346134 MPa
3 -3
_ 2x10° x36.379x10 _ 7774976 MPa

Te 9.35797x10°°

Ao



Shear Stresses in Beams

_Q

Tt
7 .- the shear stress in the member at the point located a distance y’ from the neutral axis.
V:-the internal resultant shear force.
I:-the moment of inertia of the entire cross sectional area computed about the neutral axis.

t:-the width of the members cross sectional area, measured at the point where r is to be
determined.

Q=VyA’, where A’ is the top (or bottom) portion of the members cross sectional area,
defined from the section where t is measured, and y’ is the distance to the centroid of A’,
measured from the neutral axis.

AT



Example 47: A metal beam with span L=3 ft is simply supported at points A and B. The
uniform load on the beam is q=160 Ib/in. The cross section of the beam is rectangular with
width b=1 in and height h=4 in. Determine the normal stress and shear stress at point C,
which is located 1 in below the top of the beam and 8 in from the right hand support.

> M, =0
B,x3x12-5760x%1.5x12=0
B,=2880 Ib

> F, =0

A,+2880-5760=0
A,=2880 Ib

28801b

g=1601b/in

44—

‘¢¢¢¢¢il¢¢¢t¢¢¢i

A

28801b

M, =25.92 kin
|

18in

28801b

AY

q =160 Ib/in
oYY YYYYYYYYYY YV Y
AVe C B
VTQW
’ N
| 3 ft !
5760|bl
A B

V2880
10 18
V=1600 Ib




At point C x=28 in from left end
from shear force diagram

N.A

M :%x 2880><18—%><1600><10

M=17.92 k.in

_bh®  1x(4)°

T 12 12
A'=1x1=1 in’
y=15Iin
Q=yA=15%x1=15in

=5.3333in*

GC = —w = —w = —336 kS|
I 5.3333
_\Q
It
1600x1.5 .
7 =————— =450 psi
5.3333x1

AA

41in

A

Y

lin



Example 48: Consider the cantilever beam subjected to the concentrated load shown
below. The cross section of the beam is of T-shape. Determine the maximum shearing
stress in the beam and also determine the shearing stress 25 mm from the top surface of the

beam of a section adjacent to the supporting wall. 50 mm
50 KN >
2m
|« > )
> M, =0 v
M-50x2:0 A B 125 mm
M=100 KN.m J
szZO 2m S0HN 50 mm ::
A,-50=0 |« > |
= le >
A,=50 KN M C A\ ! 200 mm |
A
A
50 KN
2m
le N
|« >
\ 4
B
100 KN.m C
A
50 KN

50 KN

0

S.F. Diagram
B.M. Diagram
100 KN.m
50 mm

From shear and bending moment diagrams 1
V=50 KN 125 mm 2
M=100 KN.m

Y

A

s0mm | 1

200 mm
A4



No. of Area A(m?) y (M) yA(m®)
1 10000x10° 25x107 250000%10™°
2 6250x10° 112.5%x10° 703125x10°°
Yy A=16250x10" " yA=953125x10"

2 YA
Ye = ZA 50 mm
~ 953125x10°°

Ve = 16250x10°
=58.65mm 125 mm 2 ¢, =116.35mm

=58.65x10° m A 1

N.A \ 4

¢, =58.65mm

|:|1+|2 s50mm 1 ¥
3
Il:%JrAdz - 200 mm >
~ 200x107° x (50x107%)°
B 12
1,=13.40655833%10° m*
bh? )
l,=—+ Ad
12
_ 50x107° x(125x107%)°
- 12
1,=26.26191146x10° m*

1=39.6684x10° m*

+10000x107° x (33.65x107%)?

I,

I,

+6250%x107° x(53.85x107%)?

Q=yA 5
A'=50x10°x116.35x10

=0.0058175 m? 125 mm
y'=58.175%10° m NA
Q=0.000338433 m* ¥ 1

=58.65 mm
50 mm 1 C.
_\VQ

Tmax It

3
_—_ 50x10 ><0.7(20033843E’>3 _ 85315553 MPa
39.6684x10"° x50x10

200 mm




Q — V'A' A A
A'=50x10"°x25x10"® - v
=0.00125 m? m
y'=103.85%10° m N.A y
Q=0.000129812 m* somn ) ¢, =5665 mm

¢, =116.35mm

Il \I
VQ < N
T = It 200 mm

3
. _ 50x10° x0.000129812 _ 4 1010t vioe

© 30.6684x107° x50x1073

1)



Curved Beams

Due to the curvature of the beam, the normal strain in the beam does not vary linearly with depth as in the
case of a straight beam .As result, the neutral axis does not pass through the centroid of the cross section.

Centroid

Neutral axis

o2
/ Area element dA 3 R =

o'

If we isolate a differential segment of the beam let a strip material located at r distance has an original length
r dO .Due to the rotations 66/2, the strip's total change in length is 30)R-r(

(b)

g 00R=T) | 00 _ g:k(H)
rdé@ o r

Strain is a nonlinear function of r, in fact it varies in a hyperbolic fashion .Hooke's law applies,

o= Ek(?)

D Fp=0

[oda=0 :jEk(R‘r)dAzo
A A r
Rjd—A—jdA=o

A r A

ay



R-:The location of the neutral axis, specified from the center of curvature 0' of the member.

A-:The cross -sectional area of the member.
r-:The arbitrary position of the area element dAon the cross section, specified from the center of
curvature 0' of the member.

TABLE 6-2
Shape Area ,//‘d%‘
5]
b(ry—ry) b In 7—;

mab 2% (F— / )_'3—112)

My
oOo=———"—
Ae(R-y)
y=R-r,e=r-R

o -:The normal stress in the member.
M -.The internal moment, determined from the method of sections equations of equilibrium and computed about
the centroidal axis .

A -:The cross-sectional area of the member.

R -The distance measured from the center of curvature to the neutral axis.

I -.The distance measured from the center of curvature to the centroid of the cross-sectional area.

r --The distance measured from the center of curvature to the point where the stress o is to be determined.

ay



_ M(ro_R)

o, = Normal stress at the bar's top.
° " Ar,(F—R) 0 P
o = M(R-r) Normal stress at the bar's bottom.
' Ar(T-R)

Example:-The curved bar has a cross-sectional area shown below .If it is subjected to bending moments of 4
kN ¢ m, determine the maximum normal stress developed in the bar.

Area A(mm?) y'(mm) y A(mm®)
rectangle 2500 225 562500
triangle 750 260 195000
3250 757500
VA
ro 2 YA 757500 »ag 06
S A 3250
A
" A
o r
> A=3250mm
zjﬁﬁszﬁ+—9i—mi—b
R I,

1 (rz_rl) ]

In220, 50x280 280 o\ /04389 mm

+
200 (280-250) 250

3250
14.04389

= 231417 mm

q¢



_M(R-1) 4x10°(231.417x10° —200x107?)

MV - - - = -116.5373MPa
Ar(f—R)  3250x10° x200x107°(233.076x10° —231.417x107?)

B

o o M, —R) _ 4x10°(280x107° - 231.417x10°°)
* A, (T-R) 3250x10°x280x10°(233.076x107° —231.417x10"°)
maximum stress at point A=128.7231MPa

=128.7231MPa The

Example:-The frame of a punch press is shown below. Find the stresses at the inner and outer surface at
section x-x of the frame if W=5000 N.

A:(182+6)><4O:480mm2
A _ B byt )= (18XB576x25) 85 15 6)-12365mm
R h r 40 25
R=—A _ 480 _458175mm 7
J'% 12.365
T 6 mm I 18 mm
Y

40 mm .,25 mm

3
r|‘

A A
Y_ X

65 mm

q0



Area(mm?) A(mm?) y'(mm) yA(mm®)
rectangle 720 45 32400
Triangle -120 51.666 -6200
Triangle -120 51.666 -6200
480 20000
o R 20000 ax g mm
M=Wxd=5000x(100x103+41.666x10)=708.33 N.m
o M(R-T) W 708.33(38.8175%x107° —25x107%) . 5000
' Ar(F-R) A 480x10°x25x10°(41.666x10"° -38.8175x107°) 480x10°
=296.747 MPa
M@, -R) W 708.33(65x107° —38.8175x10°®) 5000

- +
° A, (T-R) A  480x107°x65x107°(41.666x10° —38.8175x107%) 480x10°
= —198.26 MPa

a1



Slop and Deflection in Beams

The elastic curve :-the deflection diagram of the longitudinal axis that passes
through the centroid of each cross sectional area of the beam.

+M +M
T b,
S e (a) A b1 R R . aifigifisy w A _.‘ D
"myt_?pmr o E «mm.""" -
Positive internal moment
concave upwards

(a) M‘

(b) x
’\/ Moment diagram

_M(’,f:l e ,;.;;,‘)-M

Negative internal moment
concave downwards

(b)

. B Ap 2 P

& aia] oL i =
x \ E :
A Inflection point

Elastic curve
|
(a) A & e i ) !
h D C

(b)
‘/ Moment diagram

; i@
e

A {

(©) -Z. | N ] Ap
Inflection point D

Elastic curve

v



| Wi

xra T

X-axis extends positive to the right.

v-axis extends positive upward from the x-axis. e ..
1__¢
Y y
(o)
E=—
E v
M o
My || E
1 M M;{M _of e
— Inflection \ -p
1% | point \
M=0 L
Ol

When M is positive, p extends above the beam, i.e. p in the positive v direction.
When M is negative, p extends below the beam, or in the negative v direction.

Integration Method

T he elastic curve for a beam can be expressed mathematically as v=f(x)
1 d?v/dx’

o [L+(dv/dx)?]"?
M d2v/dx?

El  [L+(dv/dx)?]*"

The slop of the elastic curve which is determined from dv/dx will be very small, and
its square will be negligible compared with unity.
1 d?v

=

dx?
_d¥
dx?

m

aA



v - M
dx

d d?v
V(X)=—(El —
() dx( dx?
_av
dx
d? d?v
—W(X) =—(El —
(x) dxz( dx2)

El always positive quantity

d?v
M = El(—
(dxz)

d3v

V = El (—
(dx3)

d4

v
—w=El(—
(dx4)

Sign convention and coordinates

P o
1
\+p Elastic curve
+p
H| (Iis de
ot ' T+6
i +x dx~|

Positive sign convention

(b)

Positive deflection v

dv
+v

fdx~+—— +x

Positive sign convention

©)

iIs upward, the positive slope 6 will be

counterclockwise from the x-axis when X is positive to the right.
If positive x is directed to the left, then 6 will be positive clockwise.

_dv

Q=—
dx

19

measured



Boundary conditions

6=0
gep A=0
Roller Fixed end
2 E : 6 ;
V=0
A=0 M=0
Pin Free end
7 : 3
5 T ==
M=0
A=0 Internal pin or hinge
Roller
4 g:’i‘:‘/
A=0
Pin
dv
El - = [Mdx+C,
dx

Elv = I[J. Mdx]dx + C,x+C,

Example: The cantilevered beam shown is subjected to a vertical load P at its end.
Determine the equation of elastic curve. El is constant.

#l B 5

;
SM =0 I
M+Px=0 ;'_:‘_;;_;‘:_:__'_;:‘:_:sl ik
M:'PX *—.\'—- i ~

d?v
M = El (—) =-Px
(dxz)

El %:—%sz £C, (1)

Elv :—% PX]° +CX+Cy i (2)

Boundary conditions



O=—= and v=0

_ 152 21
O_—EPL +C, I > Cl_EPL
3
O:—%PL3+%PL3+C2 > CZ:%PLs—%PE :—%

1 1 P
El6=-=Px*+=PL’ |::> 0=—(L* —x?
2 2 o 2EI( )

V= i(—x3 +3L%x -21°%)
6El

Example: The simply supported beam shown supports the triangular distributed loading
Determine the maximum deflection. EI is constant.

Wo

QFTT/I/I _‘I\I\h"‘w;‘ .

R =
o \,,,__1 \- Elastic curve
e e ‘

2 2

Due to symmetry we take  0<x SE

E M=0
wL — wx® L x®
M-——x+———=0 M=w(=X——
Xt > (G X =30
d®v L x
M = El =W (—X——
(dx2 °(4 3L)

E|%=WLL 2_W0X4

dx 8 121

FC, e, (1)

5
EIV:WLLX?’—M+C1X+C2 ................... (2)
24 60L



Boundary conditions
at x=£  g-d=
2 dx

4

0 WLL <2 — W X
8 12L

atx=0 v=0

0=0-0+0+C, C,=0

+C, C, =

w L , x> 5°
S( X ——————X)
El 24 60L 192

V=

y _WO(L4_ L* _5L“)__W0L_4
mxTEl 1192 1920 384 120 El

Discontinuity Method

TABLE 12-2

Loading Loadvijlégwljan)ction Shear V= —/w(x)dx Moment M=/Vdx

[ rEn | . W= M0<X—a>_2 V = —M0<x—a>—] M = —M0<x—a>0

" w = P<x—a>"! V= —P<x—a>Y M= —P<x—a>!

W
w=wo<x—a>?  V=-wox—a>! M= —T()<)c—a>2

—m =M
w = m<x—a>! V= —-2—<x—a>2 M= —6—<x—a>3

A



< >n 0 for x<a
X—a) =
(x—a)" for x>a

Example:- Find the moment expression using continuity equations.
(a)

6 kN/m et e | 3 kN/m
3 kN/m 3m 3K
S jugl
1.5 kN. % P { 1.5 kN r; ; ‘ l w Y l ‘y ld—’ BJ

275 kN (b) y

M=2.75<x-0>+1.5<x-3>°- 2<x3> 6<x3>

=2.75x+1.5<x-3>°- > <x 3>2- 5 <x 3>3

Example:- Determine the equation of the elastic curve for the beam shown below. El is
constant.

i 2kN 258 kN-m 8 kN/m e

b s (tuummmmu
, )i BRenii C “\jA B <
B ——— S2kN SOKN-m —— g

‘ ’ Sm I 4 m !
s'ﬁ S5m , 4 m |
> F, =0
A-40-12=0 W——>  A,=52kN
dM, =0

Ma-40%2.5-50-12x9=0 > M,=258 kN.m

VoY



M=-258<x-0>%+52<x-0>"- g <x-0>?4+50<x-5>%+ % <x-5>°

2
El % =-258+52X-4x*+50<x-5>%+4<x-5>
X

El ;—V=—258x+26x2—%x3+50<x—5>1+%<x—5>3+C1 ................. (1)
X
Elv=-129x%+ ? xg-%x4+25<x-5>2+ % <X-5>"+Cx+Cp..ovviiin (2)

B.C

=0 atx=0 ineq.()
dx

v=0 atx=0 ineq.(2)
C1:0

C2:0
v= 2 (-120x%+ 28 53 Ly 55524+ L ax-55%
El 3" 3 3

Moment Area Method

o

Elastic curve

{a)

B
s/ a :I%

A

The notation 4, , is referred to as the angle of the tangent at B measured with respect to
the tangent at A.

dx



|l
4 —-1‘ }-*tl\ 5

M
El Diagram

Theorem 1 The angle between the tangents at any two points on the elastic curve equals
the area under the M/EI diagram between these two points.

If the area under M/EI diagram is positive, the angle is measured counterclockwise
from the tangent A to tangent B.

If the area under M/EI diagram is negative, the angle 6,,, is measured clockwise from

tangent A to tangent B. 4,,, will measured in radians.

w

CLT
P ‘—‘ ‘# ,‘dx "
mnB

= dex
- El

t, s the vertical deviation of the tangent at A with respect to the tangent at B.
[xdA=x[dA

tA/B

dx represents the area under the M/EI diagram, we can also write:-

>t—w
mi<

B
M
tA/B = XJ;E dX
x is the distance from A to the centroid of the area under the M/EI diagram between A
and B.



Theorem 2 The vertical deviation of the tangent at a point A on the elastic curve with
respect to the tangent extended from another point B equals the moment of the area under
the M/EI diagram between these two points. This moment is computed about point A

where the vertical deviation t,,, is to be determined.

R

‘ L} “.( L

(b)

Example: Determine the slope of the beam shown at points B and C. El is constant

tan B Op/a

P
* A -(\\l-"\ 8- o
A B B / w C/A
| : ”
L L
! I 5‘—4 C>J%

tan C

N~

B

O, p = jde Area under the M/EI diagram from A to B
El

A



_ -PLYL) 1(-PL PL )L
e=0n=5 |55 = 50 | 5
2El \2) 2\ EI  2EI \ 2

_ —3PL?

rad clockwise

~PL), \1_-PL’ -
6.=60.,,=| ——|(L)== rad clockwise
=6, [E, j( =2

Example: Determine the displacement of points B and C of the beam shown. El is
constant.

l tan B tan A

S tan C

A%



Example: Determine the slope at point C for the steel beam shown. Take E4=200 GPa,
1=17x10° mm* | L

— |

LZm ! 4 m ‘ 2m~—‘

Oc =10a]=10c.|

hﬁlm
~Iis

Since the angle is very small 9, =tang :%

et el T

L =320
B/A EI
8

0,
oo )3 )

320 8 _32
g. =222 =22

8ElI EI EI

g = 32
¢ 200x10°x17x107°

=0.009411 rad

Castigliano’s Theorem Applied to Beams

oM . dx
a=[udh &

0

Where:-
A=displacement of the point caused by the real loads acting on the beam.
P=external force of variable magnitude applied to the beam in the direction of A.
M=internal moment in the beam, expressed as a function of x and caused by both the force
P and the load on the beam.
oM | dx
o= ! V]

& =the slope of the tangent at a point on the elastic curve.



M =an external couple moment acting at the point.

Example: Determine the displacement of point B on the beam shown below. EI is
constant.

ZM :O r wx :
§ B
M + WX(E) +Px=0 |
: DL
X
M=—W7—PX ISR
M _
P
When P=0

, SEl

Example: Determine the displacement of point A of the steel beam shown below.
1=450 in*, Eq=29x10° ksi.

‘3 kip/ft ’3 Kip/ft
IV ¥ JV ¥ vy F Y YV VYV VY
im e B—‘:Qm— ds e y ; B_:&L
R 20 ft
B, C,
> Mg =0
CyX20-60X10+15X?+Px10:0
C, =27.5-0.5P
Z F, = 0

B,+27.5-0.5P-60-15-P=0

V.9



By=47.5+1.5P
> F, =0

C,=0

dM=0

3
I\/I1+%x2(ﬁ)+PX1=O

M= —-Px
1 20 1

oM, _
oP
When P=0

3
M,=- 2L
20

oM, _
oP

> M =0

_Xl

_Xl

, X S
15kip 31X2
A X2
475+1.5P

M2+3x2(x—22)+15><( %+x2)+P(1O+x2)-( 47.5+1.5P)x,=0

|v|2:_§x§+(32.5+o.5p)x2-1op-50

M 0 5x,-10
oP

When P=0
M,= _gxg +32.5x,-50 |

=T oM, dx TM oM, dx,
0

_ (12)3 10_X_f ~ (12)3 20
=g W j(

_12° | x
AT El 100|,

(12)

&

A,

(1000-6667.2)
A, —O 75 in

10

= x5 +32.5x, —50)(0.5x, —10)dx,

=3 X, +10.4166x; —175x; +500x,

VYo

20

0

|




Example: Determine the slope at point B of the A-36 steel beam shown below.1=70x10°
mm” and E=200 GPa.

2 KN/m
VVVLVVVVVVVVVVVVVV
D) C
/|
A VTQQT(
B 10 m | 5m .
fo KN
A !
) c
A -
f M
A, B,
> M, =0 M,
B,x10+ M -10x12.5=0 i
N A
B,=125-M > « >
10
Z F, = 0 M
M — 25 9
A,+12.5-2-10=0 10 X,
10 M }
A=M 25 LN ’
ZMlgo | 5 ) lVZ M-
= Y x|
Mi-(-2 -2.5)x,=0 —
1% - 12.5—'1\"—0
M= (—-2.5)x —-25
! (10 X 10
oM, 1
— = _Xl
oM 10
When M =0
M= -25x, , M_1,
oM 10
> M =0

M2+2x2(x—22)-(12.5-:/|—0)x2-(1M0—2.5)(10+x2)+ M =0



M M __
= O-— )Xo+ (— -2, +X5)-x2- M
M2 (12 5 10 )X2 (10 2 5)(10 X2) X5

M, =1y +1+Lx-1=0

oM 10 10

When M =0

My=-x2+10x,-25 |, al\:wz =0

_T am)%_m (6M1)d_x? (M 0,
) aMEl0 oM El 4T oM El
10 (-2.5%,)(C1)dx,

= 10 +0

El

0

1 10
= —0.25xdx
70x10° x107'2 x 200x10° ;'; e

=0.07142x10°%(-0.0833 ¢ ")

6, =—-0.00595 rad
=-0.341°

Statically Indeterminate Beams

\_U
e
<

1. Method of Integration:

Example: The beam is subjected to the distributed loading shown. Determine the reaction
at A. El is constant.

wo

3 ooy mTl/l/l I ; t%“?—l‘——"":B
e—_—— T i,
x pos rr——— '-T%» B,
!— _" E ! i i ? %L \ % L ;_‘ M B

(h

)Y



> M =0
w, x*

M-AX+——=0
6L

wx3

M=AX-—>
6L

d?v
M = El(—
(dx2
3 2
_ W X' (d_;’
dx
AyX2 Wox4
2 24L
A X3 5
T WX +C,x+C,
6 120L
Boundary Conditions
dv

at x=0 v=0, atx=L &zo ,atx=L v=0
0=0-0+0+C, W——> C,=0

A L E
N e =0 (1)

A X
y 6L

Bl -

1

Elv =

y

2 24
A L3 4
B Wb o0 ()

6 120

From equations (1) and (2)

w L3

C=——
s
w_L

0

Y10

Example: The beam shown below is fixed supported at both ends and is subjected to the
uniform loading shown. Determine the reactions at the supports. Neglect the effect of axial
load.

REREREREEERN

i'———x——'i L”Jl

f—




VA=VB=W7L
Ma=Mg= M’
d>M=0
2
M+ M+ WL =0
2 2
2
M =X +W—Lx—M’
2 2
d’v
M =El(—
(dx2
2 2
El(d—:/ - W +W—Lx—
dx 2 2
3
E|(Q):_K+W_LX2_
dx 6 4

wx® wL , M
+—X" -

24 12

Boundary Conditions

!

Elv = -

at x=0 v=0, at x=0

M!
Mx+C,

x* +C,x+C,

ﬂ:0 ,atx=L v=0
dx

0=-0+0-0+0+C, C,=0
0=-0+0-0+C, 10 C,=0

Cwltowlt M’L2
24 12 2

_wl?

12

M !



Moment Area Method(Statically Indeterminate):
Since application of the moment area theorems requires calculation of both the area

under the M/EI diagram and the centroidal location of this area, it is often convenient to
use separate M/EI diagrams for each of the known loads and redundant rather than using
the resultant diagram to compute these geometric quantities.

SkN M (kNm)
4 kN/m
13 kN
30kN'm

S8 kN:

4 kN/m
+
M (KNm)
2 4
+— x(m)
=30
+
M (kKN-m)
2 4
oy —

Superposition of moment diagrams

Superposition of loadings

(a) (b)

Yo



Example: The beam is subjected to the concentrated loading shown. Determine the
reactions of the supports. El is constant.

T

l N/A i
tan A

: 41 —&\
From the elastic curve A, =0, tg/a=0 | = il

(d)
Using superposition method to draw the separate M/EI diagrams tor the redundant reaction

By and the load P.

tan B

M
X El
ByL }\
EI
L 2L
A B
For load P For redundant reaction B,
LESHLAD oG ePudn=o
2" El 3 El 27 2% El 37
B, =2.5P
> F, =0
-A,-P+25P=0 ——> A,~15P s
> M, =0

Ma=0.5PL

e



Example: The beam is subjected to the couple moment at it end C as shown below

Determine the reaction at B. El is constant.

7
|

I T 5

A).

F th I t tC/A tB/A
rom the elastic curve R =to,n =24

Using superposition method to draw the separate M/EI diagrams for the redundant reaction
B, and the load M,.

M

L ot
: . E | - ]\J}O
My 2El
2l i
EI
For redundant reaction By For load M,
o _ L3 _Mo
tg/n = ( )[_(L)(E)] ( L)[—( )(—2EI )= 12EI( y I_)
L M,
te)a=(L+ L)[_(L)(E)] (— )[_(L)(E)] (—L)[—(2L) =ﬁ(6|3y—8 I_)
LS

68, -8 ) > B,
12EI( y L 12EI y Il
A M ,cy=5M°

4L L

y

Y



Combined Stresses
There are three types of loading: axial, torsional and flexural.
Axial loading o, :%

Torsional loading 7 = Tr

T
J
Flexural loading o, zy

There are four possible combinations of these loadings:
1. Axial and flexural.

2. Axial and torsional.
3. Torsional and flexural.

4. Axial , torsional and flexural. lQ
Bis
O N 17 N . SN B Y o N
- L) / it
y A—»\;
A >
M.
o1+
P B >
O-a 4— _____________ y_ ______________ - —>
L) T
$— . A=
A »

o
o8]
Y

T
g
i

|

For pointA o,=0,+0, forpointB o,=0,-0,



Example: The bent steel bar shown is 200 mm square. Determine the normal stresses at A
and B.

> M. =0
-500%200%10>+R;x900x10°=0
R;=111.111 kN

Z Fy =0
R,+111.111c0s(53.1301)-500sin(53.1301)=0
R,=333.333kN

53.130Tr

> F =0
R3+111.111sin(53.1301)-500c0s(53.1301)=0

R;=388.888kN
o, =P 500
A (200x200x107°)

M=-500x200x10°+111.111x700x10"
M=-22.2223 kN.m
o My _ 22.2223x100x10°°

"7 1 (200x107°) x(200x107°)°/12
o,=-0, -0, =-125-16.666 = —29.166 MPa

oy =—0, +0, =—125+16.666 = 4.166 MPa

=-12.5MPa

=16.666 MPa

ARR!



Stresses at a Point

o, t+0O o, —O
o, = (——)+( X2 £)C0S20+7,,SiN20 ... (1)
+ —
oy = (GX 5 ny)—(aX zay)cosza—rXy Sin20 ... (2)
o, —O
Tsy =—(%)sin 20+71,,€0820 L 3)
The planes defining maximum or minimum normal stresses are found from:
2t
tan2d, =——— 4)
oy, —O,
The planes of maximum shearing stresses are defined by :
o, —O
tan20, =———~ (5)
27,
The planes of zero shearing stresses may be determined by s
2t
tan20 =—2— (6)
o, —O0,

Equation 6 and 4 show that maximum and minimum normal stresses occur on planes of

zero shearing stresses.
The maximum and minimum normal stresses are called the principal stresses.

Y.



Equation 5 is the negative reciprocal of equation 4. This means that the values of 26 from
equation 5 and equation 4 differ by 90°. This means that the planes of maximum shearing
stress are at 45° with the planes of principal stress.

O = & ;Gy i\/(%)z TP (7)

S A ®)
o, +0

Tag = Lo e 9)

Example:The state of plane stress at a point is represented by the element shown.
Determine the state of stress at the point on another element oriented 30° clockwise from
the position shown.

o, =—80MPa 50MPa
o, =50MPa A
7, =—25MPa
0=-30°

+
o =220 (& y)c052¢9+r sin26 80MPa

2
: (‘80+50) A o0- 50) c0s(—60) — 25sin(—60)

oy = —25.849 MPa

o, +to v
oy =(— 5 y) ( y)c052¢9 z,,8iN20
o, =(‘802+50)—( 802 29 c0s(-60) + 255in(~60)
&, =-4.15MPa

A

25MPa

v

_Gy .
Tyy =—(——F—)sin20+r,, cos20

o= —(y)sin(—am _ 25c0s(-60)

<« =—068.791MPa

X

68.791MPa
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Example: When the torsional loading T is applied to the bar shown it produce a state of
pure shear stress in the material. Determine a) the maximum in plane shear stress and the
associated average normal stress. b) the principal stresses.
o,=0

o,=0

z,, =-60MPa r

o,—0 58
) T = —\/ (5 +7y v 60MPa

T = i\/(o_;o)z +(-60)2 =60MPa

o, +0
Oagy = - y:O-i-O:O
2 2

(o} (o}
tan 20, = ———

ZTXy

tan 26, = - 0 =0
2x—-60
06=0

o, +0o o, —0
) o = (P (O

Omax. = (Ozo)i\/(ogo)z +(_60)2 =+60MPa

omax—00 MPa
Gmin:'60 M Pa

27
tan 26, = al
o, —0,

2x—60

o0

tan 26’p =

= . %=45°or 135°

+ o,—0O o
S0y (e X)c0s26 + 7, sin 20 ~ /GOMPa
2 \O‘,:T

* 2
0, ,0 .
oy = (E) + (E) c0s(90) —60sin(90) = -60 MPa
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Example: The state of plane stress at a point on a body is shown on the element.

this stress state in terms of the principal stresses.

o, =—20MPa 90 MPa
O'max—ﬁﬂ(MRBy)Jr\/( x2 y) rz, —i» ~’—20Mpu
~20+90, . [—20-90 -
O max. = ( )i\/( 5 )* +(60)°
O, =35+81.394
Omax—116.394 MPa
omin=-46.394 MPa
2
tan 20, = ——>—=—2*%0__ _ 990909
o,—o, —20-90
20, = —47.489—— 0, = -23.7440r 66.256°
o,to
o, =( 5 )+ ( y)c052¢9+r sin26
) (_20+90) +( 202 90) cos(-47.489) + 60sin(~47.489) = —46.349MPa
9p1—66.256°
0p2=-23.744°

o, =116 MPa

0,,=66.3°

(c)

\YY
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Example: A sign of dimensions 2 mx1.2 m is supported by a hollow circular pole having
outer diameter 220 mm and inner diameter 180 mm as shown below. The sign is offset 0.5
m from the center line of the pole and its lower edge is 6 m above the ground. Determine
the principal stresses and maximum shear stresses at points A and B at the base of the pole
due to wind pressure of 20 kPa against the sign.

w=PA=2%(2%x1.2)=4.8 kN
T=wr=4.8x(1+0.5)=7.2 KN.m
M=wd=4.8x(6+0.6)=31.68 kN.m
V=w=4.8 kN

| =§[d; —di]= &[(220><10’3)4 (18010
1=63.46x10° m*

-3
L 3168 220x10
o= _ 2___ _5491MPa
| 36.46x10
-3
- S 5, 220x10
r== 2 = 6.24MPa

%[(220x10_3)4 — (180x10%)*]

(a) (b)

V T —
¥ :|_? ,t:2(|’2 _rl) | :Z('}A _r14) ,A:E(I’ZZ _rlz)

an.\ T > _ ﬁ T2
AQ_(g)(ErZ) G IGH 4

yzylAi_yz _ _ [I’Zs—rf]
A-A, zrzz_ﬁrlz 3r I’22—I‘12
2 2
Y N S AT 2
=yA=—[2—LIx=(rf-r)==(r; -1
Q y 37Z'[r22—r12]x2(2 1) 3(2 1)
2
AV r3 _r3
r, = 3( : 1) _ 4V(2r22 +2r2r12+r12)2
%(r; - I’14)><2(r2 _rl) 37[([’2 —h )(I‘2 +h )
T2=O.76 MPa
y54.91 MPa
A U'y=(TA ‘y
01—=29. A Ty=7 B L—‘ Ty=T+ T
0,=-0.7 MF l B I x l ] x
o o
Tmax=28.2 N
Point B -— —
o=/ MPa
c,=-7 MPa \

Tmax=/ MPa

ARR



Mohr's Circle

For plane stresses transformation have a graphical solution that is often convenient to use
and easy to remember. Furthermore this approach will allow us to visualize how the
normal and shear stress components o, and z,, vary as the plane on which they act is

oriented in different directions. This graphical solution known as Mohr's circle.

o, =(— 5 y)+( y)00326?+r sin20

O,—0y. .
Tzy :—(T)sm249+rXy c0s260

The parameter 0 can be eliminated by squaring each equation and adding the equations
together. The result is:
(o +O'y (o —O'y 2 2
[ox —(—) +7 (T) +7,
o,+o 2 o,—0O

X —_ X 2 2
Let C:Ty’ R== Ty) +Txy

[0, —c]* +7,,> =R? this equation represents a circle having a radius R and center at point
X Xy q p
(c,0).

avg =

Construction of the circle
1. Establish a coordinate system such that the abscissa represents the normal stress ¢

with positive to the right and the ordinate represents the shear stress t with positive
down ward.
2. Using the positive sign convention for c,c,1,, as shown:

Yo



o,+to,

Plot the center of the circle C which is located on the ¢ axis at a distance o, = 5

from the origin.

3. Plot the reference point A having coordinate A(o,,7, ). This point represents the
normal and shear stress components on the element's right hand vertical face, and
since the x axis coincides with the x axis, this represents 6=0.

4. Connect point A with the center C of the circle and determine CA by trigonometry.
This distance represents the radius R of the circle.

5. Once R has been determined , sketch the circle.

Principal Stresses
The principal stresses 6; and o, (61>0,) are represented by the two points B and D where
the circle intersects the ¢ axis i.e where 1=0.

These stresses act on planes defined by angles 0, and 6,,. They are represented on the
circle by angles 26,; and 26,,and are measured from the radial reference line CA to line CB
and CD respectively.

Using trigonometry only one of these angles needs to be calculated from the circle since 6
and 0y, are 90° apart.
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Maximum in Plane Shear Stress.
The average normal stress and maximum in plane shear stress components are determined
from the circle as the coordinates of either point E or F. In this case the angles 05, and 0,

give the orientation of the planes that contain these components. The angle 265 can be
determined using trigonometrv.

Oavg

y

(Tey )max
in-plane

Stress on Arbitrary Plane.

The normal and shear stress components o, and r,,acting on a specified plane defined by
the angle 0 can be obtained from the circle using trigonometry to determine the coordinates
of point P.

To locate P, the known angle 0 for the plane must be measured on the circle in the same
direction 260 from the radial reference line CA to the radial line CP.

Example: Due to the applied loading the element at point A on the solid cylinder is

subjected to the state of stress shown. Determine the principal stresses acting at this point.
o, =-12 ksi

o, ="
rxy=-6kSi

o.+o, _ i
c=—X_Y— 12+0:—6kSI

2 2
O, —O
R:\/(—X > )tz

R= \/(‘122‘0)2 +(-6)° =8.485 ksi

o, =C+R

o, =-6+8.485=2.485 ksi
o,=C—R

o, =-6-8.485=-14.485 ksi

L, 6 3
20, =tan l(ﬂ) = tan'(1) =45°
6,, =22.5°

xl
7 (ksi)

\YY



Example: An element in plane stress at the surface of a large machine is subjected to
stresses shown below. Using Mohr's circle determine the following quantities a) the stress
acting on element inclined at an angle 40° b)the principal stresses and c) the maximum

shear stress.
o, =15Kksi
o, =5ksi
z,, = tksi

o, +0, 1545
C: p—y
2 2

o, —O
R:\/(—X 5 y)2+TXy2

=10ksi

R= \/(ﬁ)z 1 (4)? =6.403 Ksi

A(15,4)

20,, =sin" () ~38.66°
6,, =19.33°

o, =C+R

&, = 10+6.403=16.403 ksi
o,=C—-R

&, =10-8.485=3.597ksi

o, =10+6.403c0s(41.34) =14.807 ksi

o, =10-6.403cos(41.34) = 4.807 ksi

7,, =6.403sin(41.34) = 4.23 ksi

5ksi
A

4Ksi

v

15ksi

A

A

15 ksi

3.597ksi
0,, =109.33°

16.403ksi
50, =19.33°

4.807Ksi 14.807 ksi

0 =40°

YYA



r., =R=6.403ksi

O ay =C=10ksi

26, —38.66+90=128.66°

6, =64.33° counterclockwise

7. =6.403ksi

Stresses Due to Axial Load and Torsion

o=—

A

Tc

T=—
J

o,,0, from Mohr’s circle or from stress transformation equations.

Example: An axial force of 900 N and a torque of 2.5 N.m are applied to the shaft as
shown. If the shaft has a diameter of 40 mm, determine the principal stresses at appoint P

»
>

O oy =10ksi

64.33°

A

on its surface.

1900 N

=11 =25x(20107) _19g 94367 kPa
J %(20x10*3)4
_Po 900 71619724 kPa
A 7(20x107°)
716.2 kPa
198.9 kPa
o,=0,0 Pa , =198.94367 kPa

AR
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o,+0, 71619724
2 2

c= =358.09862 kPa

R= \/ (@)2 i, = \/ (w;gm‘)2 +(198.94367)7 = 409.65 kPa

O (kPa)

o, =C+ R -358.09862+409.65=767.74862 kPa
o, =C—R -35809862-409.65=-51.55138 kPa

260,, =sin™ (M) =29.054
409.65

0,, =14.527 clockwise

767.7 kPa

Example: The beam shown below is subjected to the distributed loading of w=120 kN/m.
Determine the principal stresses in the beam at point P, which lies at the top of the web.
Neglect the size of the fillets and stress concentrations at this point. 1=67.4x10° m”.

w = 120 kN/m

EERRERRRRRIRIIRRY
A=0
ZMB:O
Ax2-240x1=0 ——=> A,=120 kN
B,=120 kN
-V-36+120=0
V=84 kN

VY

15 mm

B
200 mm N ﬁ)
J—E&T mm
[

1Smm 175 mm



M-120%0.3+36x0.15=0
M=30.6 KN.m

My  30.6x10°x100x10°°
1 67.4x10°

I 15 mm
VT P
LR N.A

It
Q= YA =(107.5x10%)x(175%10°x15%x10")=0.000282187 m®

L 84x0.000282187 _ 35168 MPa

 67.4x10°° x10x1073

- 175 mm
=-45.4MPa

- 380N,
+ . ~l— 45.4 MPa

o, =-454 MPa o, =0 7 =-35.168 MPa
0)( + Uy _ = 45.4
2

C= =-22.7 MPa

R= \/ (%)2 +7,° = \/(0_35'4)2 +(-35.168)> = 41.857 MPa

A1H45.4—~

W
352
l 29p2 227
UZ Ké//cl -

o, =C+R _—227+41857=19.157 MPa
o, =C—R_—227-41.857=-64.557 MPa

35.168

41.857
0,, = 28.58counterclockwise

20, =sin™(

)=57.16 19.2 MPa

64.6 MPa :

Strain at a Point

AR



Plane Strain

+€,dy

y

gX
tan 26, = —(

Y max

\+9

£

2

E, —&
=\/( X 5 y)2+(%")2 Maximum in plane shear strain

Example:A differential element of material at a point is subjected to a state of plane strain
£,=500x10° , ¢,=-300x10", y,, =200x10°, which tends to distort the element as shown

below. Determine the equivalent strains acting on an element oriented at the point
clockwise 30° from the original position.

=T
e dy

¥

0 = 60°

6 =-30°

AR



-6 -6 -6 -6 s
_ 500x10°° ~300x10° _ 50010 +300x10 CoS(_ﬁ@ﬂwsin(—m)

&

X 2 2
g, =213x107°
+ —
gy = Ex Ty Ex Ty cosze—y—xysin 20
2 2 2
- 6 -6 -6 -6
;, - 500x10° ~300x10° _500x10°° +300x10° (o0 g 200x10° o o
2 2 2
£y =—13.4x10°
- g —&
Y53 = (= y)sin26+}/—xyc0326'
2 2 2
_ -6 -6 6
7;y __(500x10 —;300x10 Jsin(-60) + 200210 c0s(_60)

Vay =793x10°°

Mohr's Circle — Plane Strain
_&téEy

C=
2

R:\/(gx ;‘931)2 +(77xy)2

Point A (gx,%‘y)

e The principal strain ¢and ¢,are determined from the circle as the coordinates of
points B and D.

e The average normal strain and the maximum in plane shear strain are determined
from the circle as the coordinates of points E and F.

€.
Cavg

N[
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e The normal and shear strain components ¢, and y,, for a plane specified at angle ¢

can be obtained from the circle using trigonometry to determine the coordinates of
point P.

Example:The state of plane strain at a point is represented on an element having
components ¢,=-300x10"° ,,=-100x10°, y, =100x10°°. Determine the state of strain on

an element oriented 20° clockwise from this reported position.
_& t+t&,  —300x107°-100x10°

C= - =-200x10°°
2 2
— _ -6 -6 -6
R:\/(gx gy)2+(y_xy)2:\/( 300x10°° +100x10 )2+(10O><10 .
2 2 2 2
R=1118x10"°

Point A(-300x10°,50x10°°)

] 50
=sin?(——) = 26.56
¢ (111.8)

w =40—26.56=13.44
&, =—(C +Rcosy)
&, =—(200x107° +111.8x107° cos(L3.44)) i
— € (10

&, =—(309x10°) .
Vxy . '

2y =-—Rsiny —€y—
5~ _111.8x10°° sin(13.44)

2 ' %’(10‘6)

Vgy = —52x107°

gy =—(C —Rcosy)

£y =—(200x107° —111.8x10°° cos(13.44))
g; =—(91.3x10°)

ARR



Theories of Failure:-

1. Ductile Materials
a) Maximum Shear Stress Theory
CARLS

o,,0, have same signs. (Rankine)
CARES

o, —0,| =0y } o,,0, have opposite signs.(Guest-Tresca)

b) Maximum Principal Strain Theory
o, —vo, —vo, =c, (Saint-Venant)

¢) Maximum Shear Strain Energy Per Unit Volume (Distortion Energy
Theory)
For the case of triaxial stress

%[(al ~0,) +(0,-0,)" +(o, —01)2]: o. (Maxwell-Huber-Von Mises)

For the case of plane or biaxial stress
012 — 0,0, +O'22 =(7$
d) Total Strain Energy Per Unit Volume

ol +o? +ol -2v(o,0, +0,0,+0,0,)=c; (Haigh)

2. Brittle_Materials
a) Maximum Normal Stress Theory
If the material is subjected to plane stress.
|0'1| =Out

|O-2| = o-ult

Yo



Example:- The steel pipe shown below has an inner diameter of 60 mm and an outer
diameter of 80 mm. If it is subjected to a torsional moment of 8 KN.m and a bending
moment of 3.5 KN.m, determine if these loadings cause failure as defined by the
maximum distortion energy theory. The yield stress for the steel found from a tension test
Is 6y=250 MPa.

2
2 )
o, —0,0, +0, =0y

e Point A

8 kN'm |

(b)

a

(c)

3
= 8x40x10 _116.41 MPa

J %[(40><10_3)4—(30x10_3)4]

3
o =M _ 35x40x10 ~101.859 MPa

' %[(40><10’3)4—(30><1073)4]

___ , 11641MPa

0x=-101.859 MPa , 6,=0 , 1,,=116.41 MPa l ‘ 101.859 MPa

o, +0 —
o= 29y - ~101859+0 _ 49595 MPa

2 2
R= \/(%)2 rr? = J(%)Z +(116.41)° =127.063 MPa
A(-101.859,116.41) Draw Mohr’s circle

0, =C+R=-50.9295+127.063=76.1335 MPa
o, =C—-R=-50.9295-127.063
=-177.9925 MPa

2 2 2
o, —0,0,+0, =0y

A 01

(76.1335)%(76.1335)( -177.9925)+( -177.9925)? <(250)?
51100<62500 since 51100<62500 so these loadings will not cause failure.

Al



Example:- The solid shaft shown below has a radius of 0.5 in. and is made of steel having
yield stress o, =36 ksi. Determine if the loadings cause the shaft to fail according to the

maximum shear stress theory and the maximum distortion energy theory.

o _P__15 ~=19.1ksi
A (0.5 .
A _Tr _3.25x0.5 =16.55 ksi 3
! 2 sy’

= ® 16.55ksi

+— 19.10 ksi

o,=-191 ksi , o,=0, 7=16.55 Kksi

o, +o o,—0
y X ¥ \2 2
0y, = i\/( ) +Ty

2 2
:_19'1+Oi\/(_19'1_0)2+(16.55)2
2 2
=-9.55+19.11
o, =9.56 ksi
o, =—28.66 ksi

e Maximum shear stress theory

|O'1 - O-2| =0y
|9.56+ 28.66| =36

38.2>36
So the failure will occur according to this theory.
e maximum distortion energy theory

2 2 _ 2
o, — 0,0, +(72 =0y

(9.56)%(9.56)(-28.66)+(-28.66)°=(36)*
1186.515<1296

the failure will not occur according to this theory.

AR



Example:- The solid cast iron shaft shown below is subjected to a torque of T=400 Ib.ft.
Determine the smallest radius so that it does not fail according to the maximum normal

stress theory o, =20 ksi.

Tr 400x12xr 30558

T =—

J T 4 r3
—(r
40
o,=0, o, =0,7 = 30r535.8 psi
o, +0 o,
012 = 5 y+\/( 5 y)z"‘ffy
0+0 0-0,, ,30558,,
= * +
O 5 \/( 5 )" +( 2 )
30558 3055.8
1= re ’ 2= 3
|01|=Gult
30535.8 20000
r
r=0.535 in.

VYA

T =400 Ib-ft

w

T =400 lb-ft



Columns
Columns are long slender members subjected to an axial compressive force. The force

may be large enough to cause the member to deflect laterally or sides way, this deflection
Is called buckling.

Critical Load
The maximum axial load that a column support when it is on the verge of buckling is

called the critical load (P.,).

-~

oo —

Any additional loading will cause the column to buckle and therefore deflect laterally.

P> Ry

Ideal Column with Pin Supports

The column to beconsideredis an ideal column, meaning one that is perfectly straight
before loading, is made of homogeneous material, and upon which the load is
appliedthrough the centroid of the cross section. It is further assumed that the material
behaves in a linear-elastic manner and that the column buckles or bends in a single

plane.

Y4



In order to determine the critical load and the buckled shape of the column we will apply
the following equation:

2
19V _m
dx

Z M section — 0
M+Pv=0
M=-Pv

C, and C, are determined from the boundary cc n

v=0 at x=0 W > C,=0
_ _ Py
v=0 at x=L [|[||:> Clsln(\/; L)=0

C1#0 therefore

. fP

Sln( EL)=O

1/iLGﬁ
El

The smallest value of P is obtained when n=1, so the critical load for the column is:

Ve



7El

L2
This load is sometimes referred to as the Euler load, n represents the number of waves in
the deflected shape of the column; if n=2 two waves will appear in the buckled shape and
the column will support a critical load that is 4P,.

Pcr =

The corresponding buckled shape is:
v :Clsin(%)

The constant C, represent the maximum deflection v, which occurs at the midpoint of the
column.

It is important to realize that the column will buckle about the principal axis of cross
section having the least moment of inertia(the weakest axis). For example a column having
a rectangular cross section as shown below will buckle about the a-a axis not the b-b axis.

S

As a result engineers usually try to achieve a balance keeping the moments of inertia the
same in all directions

Iley




P¢ critical or maximum axial load on the column just before it begins to buckle. This load
must not cause the stress in the column to exceed the proportional limit.

E: modulus of elasticity for the material.

I: least moment of inertia for the column's cross sectional area.

L: unzsupported length of the column, whose ends are pinned.

I=Ar

B 7’E
L
)
r
o, .critical stress which is an average stress in the column just before the column buckles.

This stress is an elastic stress and therefore:
o, <0y

[*

(o}

cr

r: smallest radius of gyration of the column r = \/IA.

L/r: slenderness ratio, it’s a measure of the column flexibility.

Example: A 24 ft long A-36 steel tube having the cross section shown below is to be used
as a pin ended column. Determine the maximum allowable axial load the column can
support so that it does not buckile. E=29x10°%ksi, o, =36 Kksi.

7 ><29x103><%(34 —2.75%)

P _ 7’El
e (24x12)? 1
=64.52 kip. T8
P, 64.52
o, =—=—
A x(3-275%)
=14.28 ksi |

Since o, <o,
Paiow=64.52 klp

Ry

Example: The A-36 steel W8x31 member shown below is to be used as a pin connected
column. Determine the largest axial load it can support before it either begins to buckle or
the steel yields. Eq=29x10%ksi, &, =36 ksi. A=9.13 in®, 1,=110 in*, 1,=37.1 in*.

Buckling occurs about y-axis.
7°El _ 7?x29%x10°x37.1

P =
AN (12x12)?
=512 kip
o, =t 12 _gq;
A 913

O¢r > Oy

V&Y



P
o, =360 = P
A 913
P=328.68 Kip.
Columns Having Various Types of Supports

e Fixed-Free column x

z M section — 0
M-P(s-v)=0
M=P(5 -V)

El %—P(& V)

d’v P P
—+—V=—
dx* El  El
The solution of equation (1) consists of both a complemet

V= Clsin(\/g X)+C, cos(\/g X)+F O oreens crererenen (2)

C, and C, are determined from the boundary conditions :
v=0 at x=0 T >C,=-6

Y_p at x=0
d

Jicos(\/ix) C\/ism(\/ix)
v=0[1- cos(\/i X)] e e (3)

Since the deflection at the top of the column is &, that is at x=L v=¢

o cos(\/g L)=0

070

cos(Ji L)=0 or1/£ LG—”
El El 2

n’z2El
412
The smallest value of P is obtained when n=1, so the critical load for the column is:
_ #’El

(b)

VEY



Effective Length

The effective length (L) is the distance between points of inflection (that is , points of zero
moment ) in its deflection curve, assuming that the curve is extended (if necessary) until
points of inflection are reached.

| |
\’%‘ﬁi »\.\“
\d N =01 ‘
L.=KL )““ L=0sL ; [ «
Pinned —Ends K=1 / J |
Fixed-Free Ends  K=2 | §
Fixed-Ends K=0.5 & | & & I,=2L

Pinned-Fixed Ends K=0.7 b
Euler's formula becomes: ‘

7El . 7’E (d
= f O-cr =
" (KLY KLy
r
KL/r: columns effective slenderness ratio. 5
For fixed-Free ends K=2 Fixed and free ends
2 K=2]
7°El s
412

Example: A W6x15 steel column is 24 ft long and is fixed at is ends as shown below. Its
load carrying capacity is increased by bracing it about the y-y (weak) axis using strut that
are assumed to be pin connected to its midheight. Determine the load it can support so that
the column does not buckle nor the material exceed the yield stress. Take Eq=29x10°%ksi
and o, =60 ksi. A=4.43 i, ,=29.1 in* 1,=9.32 in*.

_7’El,  2?x29x10°x29.1

(KL T (12x12)?

P) _ Bl 7’ x29x10°x9.32
T (KL)? (0.7x12x12)?

P
O = ( Cr)y = —2625 =59.3 ksi
A 4.43

O, <Oy

P,=262.5 Kip. x -

(Ps) =401.7 kip

= 262.5 kip

x—x axis buckling

(b)

8.40 ft

"ﬁr

y-y axis buckling

(c)



Example: A viewing platform in a wild animal park is supported by a raw of aluminum
pipe columns having length 3.25 m and outer diameter 100 mm. The bases of the columns
are set in concrete footings and the tops of the columns are supported laterally by the
platform (pinned). The columns are being designed to support compressive loads 100 kN.
Determine the minimum required thickness t of the columns if a factor of safety n=3 is
required with respect to Euler buckling for aluminum use 72 GPa for the modulus of
elasticity and use 480 MPa for the proportional limit.
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For fixed —pinned ends column
_ 7’El
T (0.7L)?
P,=nP=3x100=300 kN
00= 72 x72x10° x|
(0.7x3.25)*
1=2.185x10° m*

1= (d? -d}
54 (0o ~d7)

2.185x10° = é[(100x10_3)4 —(100x10°% — 2t)*]

t=6.846x10° m
t=6.846 mm
d;=86.308 mm
=%(do2 —df):%[(looxlo*')2 —(86.308x107°)?]

A=2.0034x10" m’
P 300

Gy =T =—""=149738 MPa
A 2.0034x10

O'cr <O'Y

t=6.846 mm

V¢o



