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Strength of materials is a branch of applied mechanics that deals with the behavior of 

solid bodies subjected to various types of loading. The solid bodies include axially-loaded 

bars, shafts, beams, and columns. The objective of analysis will be the determination of the 

stresses, strains, and deformations produced by the loads. 

Simple Stress (): 

              If a cylindrical bar is subjected to a direct pull or push along its axis, then it is 

said to be subjected to tension or compression.  

 

 

 

       P                                                    P                  P                                                      P 

 

 

                          Tension                                                         Compression 

 

 

              In SI systems of units load is measured in Newton (N) or Kiloewton  (KN) or 

Meganewton (MN). 
  

Normal stress () : is the intensity of normal force per unit area 

 

                   Stress = 
Area

Load
             

 

                    

                   
A

P
  

 

stress may thus be compressive or tensile depending on the nature of the load and will be 

measured in units of Newton per square meter (N/m
2
). This unit, called Pascal  

 

                   1 Pa=1 N/m
2
 

                   1 KPa=1000 Pa=10
3
 Pa 

                   1 MPa=10
6
 Pa 

                   1 GPa=10
9
 Pa 

 

              In the U.S. customary or foot-pound-second system of units, express stress in 

pounds per square inch (Psi) or kilopound per square inch (Ksi)                    

Normal Strain (): 

              If a bar is subjected to a direct load, and hence a stress, the bar will change in 

length. If the bar has an original length (L) and changes in length by an amount (L), the 

strain produced is defined as follows 
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                   Strain()=
lengthoriginal

lengthinchange
 

 

                   
L

L
   

 

                                                                                           

      P                                                                                            P 

 

                                                 L                            L 

 

 

              Strain is thus a measure of the deformation of the material and is non-dimensional, 

i.e. it has no units. Tensile stresses and strains are considered positive sense. Compressive 

stresses and strains are considered negative in sense. 

 

Shear Stress () and Bearing Stress (b ): 

              Shearing stress differs from both tensile and compressive stress in that it is 

caused by forces acting along or parallel to the area resisting the forces, whereas tensile 

and compressive stresses are caused by forces perpendicular to the areas on which they act. 

For this reason, tensile and compressive stresses are called normal stresses, whereas a 

shearing stress may be called a tangential stress. 

              A shearing stress is produced whenever the applied loads cause one section of a 

body to tend to slide past its adjacent section. 

 

                   Shear stress=
shearresistingArea

loadShear
 

 

 

                                                   Q 

                            

Q                                                                                                                                Q 

 

 

                                                   Q 

                   

A

Q
  

Area resisting shear is the shaded area as shown above. 
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P                                                                                                                              A 

                                                                    P 

                                               

 

                        Single shear stress                                                 

 

 

 

P                                                                    P 

 

 

 

 

P/2 

                                                                       P 

                                                                                                                                A                                                              

 

P/2 

 

                     Double shear stress 

 

              Bearing stress is a normal stress that is produced by the compression of one 

surface against another. The bearing area is defined as the projected area of the curved 

bearing surface. 

  

 

                                                                                                      1 

                P                                                                    P                                            2 

 

                                                                                                      3 

                   
b

b
b

A

F
  

              Consider the bolted connection shown above, this connection consists of a flat bar 

A, a clevis C, and a bolt B that passes through holes in the bar and clevis. Consider the 

bearing stresses labeled 1, the projected area Ab on which they act is rectangle having a 

height equal to the thickness of the clevis and a width equal to the diameter of the bolt, the 

bearing force Fb represented by the stresses labeled 1 is equal to P/2. The same area and the 

same force apply to the stresses labeled 3. For the bearing stresses labeled 2, the bearing 

 
 

 

 

 

 

A

P


A

P 2/


 

 
A C

B
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area Ab is a rectangle with height equal to the thickness of the flat bar and width equal to 

the bolt diameter. The corresponding bearing force Fb is equal to the load P. 

 

Shear Strain (  ): 

              Shear strain is a measure of the distortion of the element due to shear. Shear 

strain is measured in radians and hence is non-dimensional, i.e. it has no units. 

 

 

 

 

 

 

 

 

 

Elastic Materials-Hook's Law: 

              A material is said to be elastic if it returns to its original, when load is 

removed. In elastic material, stress is proportional to strain. Hook's law therefore states 

that: 

                   Stress ( )  strain (  ) 

                   
strain

stress
constant 

              Within the elastic limit, i.e. within the limits in which Hook's law applies, it has 

been shown that: 

                    

                   E



 

              This constant is given the symbol E and termed the modulus of elasticity or 

Young's modulus. 

 
 

Poisson's Ratio ( ): 

              Consider the rectangular bar shown below subjected to a tensile load. Under 

the action of this load the bar will increase in length by an amount L giving a longitudinal 

strain in the bar of: 

 

                   
L

L
L


   

              The bar will also exhibit a reduction in dimensions laterally i.e. its breadth and 

depth will both reduce. 

 






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              The associated lateral strains will both be equal, will be of opposite sense to the 

longitudinal strain, and will be given by: 

                   
b

b

d

d
lat


   

              Poisson's ratio is the ratio of the lateral and longitudinal strains and always 

constant 

                   Poisson's ratio=
StrainalLongitudin

StrainLateral
 

                   
LL

dd

/

/




   

              

                   Longitudinal Strain=
E


     

                   

                   Lateral Strain=
E


   

Modulus of Rigidity ( G ): 

              For materials within the elastic range the shear strain is proportional to the shear 

stress producing it. 
                      

 

                   
StrainShear

StressShear
=Constant 

 

                   



 =G 

 

              The constant G is termed the modulus of rigidity. 

 

 

 

 

P P

b

d

2

b

2

d
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Example 1:A 25 mm square cross-section bar of length 300 mm carries an axial 

compressive load of 50 KN. Determine the stress set up in the bar and its change of length 

when the load is applied. For the bar material E=200 GN/m
2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Cross-section area of the bar(A)=25×10
-3

×25×10
-3

=625×10
-6

 m
2
 

 

              
A

P
  

 

              =
6

3

10625

1050



=80000000 N/m

2
 

 

              =80 MN/ m
2
 

 

              
E


   

 

              =
9

6

10200

1080




=0.0004 

 

              LL    
 

              L=0.0004×300×10
-3

=0.12×10
-3

m 

 

              L=0.12 mm 

 

 

 

 

KN50

mm300

mm25
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Example 2: Two circular bars, one of brass and the other of steel, are to be loaded by a 

shear load of 30 KN. Determine the necessary diameter of the bars a) in single shear b) in 

double shear, if the shear stress in the two materials must not exceed 50 MN/m
2
 and 100 

MN/m
2
 respectively.  

a) Single Shear 

 

              
A

F
                     



F
A   

 

 For brass material 

              A=
6

3

1050

1030




=0.0006 m

2
 

              A=r
2
                       



A
r                         



0006.0
r  

              r=13.8197×10
-3 

m 

              the diameter of the bar (d)=27.639×10
-3

 m 

 For steel material 

              A=
6

3

10100

1030




=0.0003 m

2
  

              


0003.0
r =9.772×10

-3 
m 

              the diameter of the bar (d)=19.544×10
-3

 m 

        

             b) Double Shear 

 

              
A

F

2
                  

2

F
A   

 For brass material 

              A=
6

3

10502

1030




=0.0003 m

2
 

              


0003.0
r =9.772×10

-3 
m 

              the diameter of the bar (d)=19.544×10
-3

 m 

 For steel material 

              A=
6

3

101002

1030




=0.00015 m

2
 

                


00015.0
r =6.909×10

-3 
m 

                            the diameter of the bar (d)=13.819×10
-3

 m 
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Example 3: The 80 kg lamp is supported by two rods AB and BC as shown. If AB has a 

diameter of 10 mm and BC has a diameter of 8 mm, determine the average normal stress in 

each rod. 
 

 

 

 

 

 

 

FBC=0.625FBA  ……………..(1) 

 

 

 

 

 

 

FBC=1308-1.44337FBA     ……….(2) 

 

1308-1.44337FBA=0.625FBA 

 

FBA=632.38 N 

 

   FBC=395.2375 N 

 

BA

BA
BA

A

F
   =

23 )105(

38.632


 

 

BA=8.051877×10
6
 Pa 

BA=8.051877 MPa 

 

BC

BC
BC

A

F
 =

23 )104(

2375.395


 

 

BC=7.863149×10
6
 Pa 

BC=7.863149 MPa 

 

 

 

 

 

    A

B

C

5

4
3

60

BCF
BAF

N8.78481.980 

060cos
5

4

0





BABC

x

FF

F

08.78460sin
5

3

0





BABC

y

FF

F
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Example 4: Shafts and pulleys are usually fastened together by means of a key, as shown. 

Consider a pulley subjected to a turning moment T of 1 KN.m keyed by a 10 mm×10  

mm×75 mm key to the shaft. The shaft is 50 mm in diameter. Determine the shear stress on 

a horizontal plane through the key. 

 

 

 

 

 

  

 

 

 

  0oM  

0025.0101 3  F  
F=40000 N 

F=40 KN 

A

F
                                                               F 

                                                                                                                         F 

A is the shaded area   

=
33

3

10751010

1040
 


                                                        

=53.333×10
6
 N/m

2
  

=53.333 MN/m
2
  

 

 

Example 5: Consider a steel bolt 10 mm in diameter and subjected to an axial tensile load 

of 10 KN as shown. Determine the average shearing stress in the bolt head, assuming 

shearing on a cylindrical surface of the same diameter as the bolt. 

A=dt 

A=×10×10
-3

×8×10
-3

=0.000251327 m
2
 

 

A

F
  

=
000251327.0

1010 3
 

 

=39.7888×10
6
 N/m

2
 

=39.7888 MN/m
2
 

 

mm50

mm10

mm10

T

F

o

KN1

mm75

mm10

mm8

KN10
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Example 6: The bar shown has a square cross section for which the depth and thickness are 

40 mm. If an axial force of 800 N is applied along the centroidal axis of the bar's cross 

sectional area, determine the average normal stress and average shear stress acting on the 

material along a) section plane a-a and b)  section plane b-b. 

 

a) section plane a-a 

 

  

      
A

P
  

 

=
33 10401040

800
 

 

 

=500 KN/m
2
 

 

A

F
  

 

F=0 

=0 

 

b) section plane b-b 

 

d=
60sin

40
=46.188 mm 

 

A

F2  

 

=
33 104010188.46

60sin800
 

=375 KN/m
2
 

 

A

F1  

=
33 104010188.46

60cos800
 

=216.50645 KN/m
2
 

 

 

 

 

a

a b

b

60

N800

N800N800

N800 N800
60

1F

2F

d
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Example 7: Determine the total increase of length of a bar of constant cross section 

hanging vertically and subject to its own weight as the only load. The bar is initially 

straight. 

 

: is the specific weight ( weight/unit volume )  

A: is the cross-sectional area 

 

AE

Aydy
d


   


L

d
0

  

= 
L

AE

Aydy

0


 

 = 
L

ydy
AE

A

0


 

 =
L

y
AE

A

0

2

2

1
 

 

= 2

2
L

AE

A
 

 

=
AE

LAL

2

.
 

 

W=AL 

 

=
AE

LW

2

.
 

 

 

 

 

 

 

 

 

 

 

 

 

dy

yA

dy

y

L
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Example 8: A member is made from a material that has a specific weight  and modulus of 

elasticity E. If its formed into a cone having the dimensions shown, determine how far its 

end is displaced due to gravity when its suspended in the vertical position. 

 

 

 

 

r

x
=

L

y
 

 

L

y
rx   

v= yx 2

3


 

 

w(y)=v= yx 2

3


 

      = y
L

yr
2

22

3




 

 

w(y)= 3

2

2

3
y

L

r
 

From equilibrium P(y)=w(y) 

 

P(y)= 3

2

2

3
y

L

r
 

A(y)=x
2
= 2

2

2

y
L

r  

d=

Ey
L

r

dyy
L

r

EyA

dyyP

2

2

2

3

2

2

3

)(

)(










  

d= ydy
E3


 

 

LL

E

ydy
d

00
3


  

E

L

6

2
   

 

 

r

y
y

L

x

)(yw

)(yP
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Example 9: A solid truncated conical bar of circular cross section tapers uniformly from a 

diameter d at its small end to D at the large end. The length of the bar is L. Determine the 

elongation due to an axial force P applied at each end as shown. 

 

y
d

r 
2

 

 

L

dD

x

y 22


  

L

xdD
y )

22
(   

L

xdDd
r )

22
(

2
  

A(x)=r
2
 

 

 

 

A(x)=
2

)
22

(
2 










L

xdDd
  

d=
ExA

Pdx

)(
=

E
L

xdDd

Pdx
2

)
22

(
2 










 

 = 










L

E
L

xdDd

Pdx

0

2

)
22

(
2



 

   =

L

L

xdDd

dD

L
E

P

0

1

)
22

(
2

)
22

(


















 

=
L

L

xdDddD
E

PL

0)
22

(
2

)
22

( 













=

2
)

22
(

222
)

22
(

ddD
E

PL

dDddD
E

PL



















 

  =

)
44

()
44

(
22 dDd

E

PL

dDD
E

PL











= 














22

114

dDddDDE

PL


 

=
dDE

PL



4
 

 

 

 

d D

L

P P

r

y

dxx

P P

22

dD

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Example 10: Determine the smallest dimensions of the circular shaft and circular end cop 

if the load it is required to support is 150 KN. The allowable tensile stress, bearing stress, 

and shear stress is (t)allow=175 MPa, is (b)allow=275 MPa, and allow=115 MPa. 

 

 (b)allow=
b

b

A

F
 

275×10
6
=

bA

310150
 

Ab=0.0005454 m
2
 

Ab=
2

2
4

d


 

d2=


0005454.044 
bA

 

d2=0.026353 m=26.353 mm 

(t)allow=
A

P
 

175×10
6
=

A

310150
 

A=0.0008571 m
2
 

A= ])1030([
4

232

1

d


=0.0008571 

d1=0.04462 m=44.62 mm 

allow=
A

F
 

115×10
6
=

A

310150
 

A=0.0013043 m
2
 

1. A=td 

     0.0013043= t××30×10
-3

 

     t=0.013839 m=13.839 mm 

2. A=td2 

     0.0013043= t××26.353×10
-3

 

     t=0.01575 m=15.75 mm 

 

 

 

 

 

 

 

 

 

KNP 150

2d

1d

mm30

t



 

 

16 

Statically Indeterminate Members: 

              If the values of all the external forces which act on a body can be 

determined by the equations of static equilibrium alone, then the force system is statically 

determinate. 

 

 

  

 

 

 

 

 

 

 

 

 

            

 

   In many cases the forces acting on a body cannot be determined by the equations of 

static alone because there are more unknown forces than the equations of equilibrium. In 

such case the force system is said to be statically indeterminate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

3R2R

1R

1R

2R 3R

1P
2P

P

3R2R

1R
4R

3R2R

1R

4R

P

1M
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Example 11: A square bar 50 mm on a side is held rigidly between the walls and loaded 

by an axial force of 150 KN as shown. Determine the reactions at the end of the bar and the 

extension of the right portion. Take E=200 GPa.  

 

 

       

 

 

 

 

 

 

 

R1+R2=150×10
3
 ………………(1) 

1=2 

 

933

3

2

933

3

1

1020010501050

10150

1020010501050

10100















 RR
 

 

0.1R1=0.15R2 

 

R1=1.5R2     …………………..(2) 

 

              From equations (1) and (2) 

 

1.5R2 + R2=150×10
3
 

  

  R2 =60000 N 

  R1=90000 N 

 

 2= 933

3

933

3

2

1020010501050

1015060000

1020010501050

10150















R
 

 

2=0.000018 m 

2=0.018 mm 

 

 

 

 

 

 

 

mm100 mm150

KN150KN150

2R
1R
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Example 12: A steel bar of cross section 500 mm
2
 is acted upon by the forces shown. 

Determine the total elongation of the bar. For steel, E=200 GPa. 

 

 

 

 

                                                      15 KN   10 KN 

                                               

 

 

 

 

 

 

 

 

 

 

 

 For portion AB 

 

1=
AE

PL
=

96

33

1020010500

105001050








=0.00025 m=0.25 mm 

 

 For portion BC 

 

2=
AE

PL
=

96

3

1020010500

11035






=0.00035 m=0.35 mm 

 

 For portion CD 

 

3=
AE

PL
=

96

3

1020010500

5.11045






=0.000675 m=0.675 mm 

 

T=1+2+3 

T=0.25+0.35+0.675=1.275 mm 

 

 

 

 

 

 

KN50 KN45

mm500 m1 m5.1

A B C D

A B
KN50 KN50 KN50

KN15
KN35

CB

KN45KN45
C D
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Example 13: Member AC shown is subjected to a vertical force of 3 KN. Determine the 

position x of this force so that the average compressive stress at C is equal to the average 

tensile stress in the tie rod AB. The rod has a cross-sectional area of 400 mm
2
 and the 

contact area at C is 650 mm
2
. 

 

 

 

 

 

 

 

 

 

 

 

  0yF  

 

FAB+FC-3000=0 

FAB+FC=3000        ………………………(1) 

 

AB=C 

 

C

C

AB

AB

A

F

A

F
  

66 1065010400  




CAB FF
 

 

FAB=0.6153 FC             …………………….(2) 

 

From equations (1) and (2) 

 

FC=1857.24 N 

FAB=1142.759 N 

 

  0AM   

  

 FC×200×10
-3

-3000×x=0 

3000

2.024.1857 
x  =0.123816 m=123.816 mm 

 

 

mm200

KN3

x

A

B

C

mm200

KN3

x

A

C

ABF

CF
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Example 14: The bar AB is considered to be absolutely rigid and is horizontal before the 

load of 200 KN is applied. The connection at A is a pin, and AB is supported by the steel 

rod EB and the copper rod CD. The length of CD is 1m, of EB is 2 m. The cross sectional 

area of CD is 500 mm
2
, the area of EB is 250 mm

2
. Determine the stress in each of the 

vertical rods and the elongation of the steel rod. Neglect the weight of AB. For copper 

E=120 GPa, for steel E=200 GPa. 

 

    

 

 

FCo×1+Fs×2-200×10
3
×1.5=0 

 

FCo=300×10
3
-2 Fs …………..(1) 

 

12

Cos 
  

s=2Co 

 

CoCo

Co

ss

s

EA

LF

EA

LF









 










 
2     

9696 1012010500

1
2

1020010250

2











Cos FF
   

                                                                                            

FCo=1.2 Fs …………………….(2) 

 

From equations (1) and (2) 

 

Fs=93750 N 

FCo=112500 N 

s

s
s

A

F
 =

610250

93750


=375000000 Pa 

s=375 MPa 

Co

Co
Co

A

F
 =

610500

112500


=225000000 Pa 

Co=225 MPa 

E

Ls
s


  =

9

6

10200

210375




=0.00375 m=3.75 mm 

 

 

 

 

A
B

C

D

E

m1 mm500 mm500

KN200

KN200

sFCoF

yA

xA

A
B

C

D

E

Co
s

  0AM
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Thermal Stresses: 

              A change in temperature can cause a material to change its dimensions. If the 

temperature increases, generally a material expands, whereas if the temperature decreases 

the material will contract. 

              The deformation of a member having a length L can be calculated using the 

formula: 

                            T=×T×L 

                            T=
AE

FL
 =×T×L 

                              T=E××T 

 

: Linear coefficient of thermal expansion. The units measure strain per degree of 

temperature. They are (1/ºF) in the foot-pound-second system and (1/ºC) or (1/ºK) in SI 

system. 

T: Change in temperature of the member. 

L: The original length of the member. 

T: The change in length of the member. 

 

Example 15: The A-36 steel bar shown is constrained to just fit between two fixed 

supports when T1=60º F. If the temperature is raised to T2=120º F determine the average 

normal thermal stress developed in the bar. For steel =6.6×10
-6

 1/ºF, E=29×10
3
 Ksi. 

 

 

 

 

 

 

  0yF  

FA-FB=F 

T-F=0 

T=×T×L 

T=E××T 

=29×10
3
 ×6.6×10

-6
 ×(120-60) 

=11.484 Ksi  

 

 

 

 

 

 

in5.0

in5.0

in20

AF

BF

A

B

T F
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Example 16: A 2014-T6 aluminum tube having a cross sectional area of 600 mm
2
 is used 

as a sleeve for an A-36 steel bolt having a cross sectional area of 400 mm
2
. When the 

temperature is T1=15º C, the nut hold the assembly in a snug position such that the axial 

force in the bolt is negligible. If the temperature increases T2=80º C, determine the average 

normal stress in the bolt and sleeve. For aluminum =23×10
-6

 1/ºC, E=73.1 GPa, for steel 

=12×10
-6

 1/ºC, E=200 GPa.  

  

 

 

 

 

  0yF  

Fsl-Fb=0 

Fsl=Fb=F 

 

FslTslFbTb )()()()(    

 

[×T×L+
AE

FL
]b=[×T×L-

AE

FL
]sl 

 

 

12×10
-6

×0.15×(80-15)+
96 1020010400

15.0






F
= 23×10

-6
×0.15×(80-15)- 

96 101.7310600

15.0






F
 

 

0.0052949×10
-6

F=0.00010725 

 

F=20255 N 

b=
bA

F
=

610400

20255


 

 

b=50.637655 MPa 

 

sl=
slA

F
=

610600

20255


 

sl=33.758436 MPa 

 

 

 

 

 

 

mm150

Tsl )(

Fsl )(

Tb )(

Fb )(


PositionInitial

PositionFinal

bF slF
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Example 17: The rigid bar shown is fixed to the top of the three posts made of A-36 steel 

and 2014-T6 aluminum. The posts each have a length of 250 mm when no load is applied 

to the bar, and the temperature is T1=20ºC. Determine the force supported by each posts if 

the bar is subjected to a uniform distributed load of 150 KN/m and the temperature is 

raised to T2=80ºC. For steel =12×10
-6

 1/ºC, E=200 GPa , for aluminum  =23×10
-6

 1/ºC, 

E=73.1 GPa.  

 

 

 

 

 

 

 

 

 

 

 

                                                                       Steel         Aluminum       Steel 

 

  0yF  

 

2Fst+Fal=90000  …………….(1) 

=(st)T-(st)F=(al)T-(al)F 

 

 

[×T×L-
AE

LFst ]st=[×T×L-
AE

LFal ]al 

 

12×10
-6

×0.25×(80-20) -                                  =23×10
-6

×0.25×(80-20) - 

 

 

1.20956×10
-9

Fal-0.994718×10
-9

Fst=0.000165 ………………..(2) 

 

From equations (1) and (2) 

 

Fst=-16444.7 N 

 

Fal=122888.8 N 

 

 

 

mm300 mm300

mKN /150

mm250

mm40

mm60

mm40

stF stFalF

KN906.0150 

PositionInitial

PositionFinal



Tst )(
Fst )(

Tal )(
Fal )(

923 10200)1040(
4

25.0






stF

923 101.73)1060(
4

25.0






alF
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Example 18: The rigid bar AD is pinned at A and attached to the bars BC and ED as 

shown. The entire system is initially stress-free and the weights of all bars are negligible. 

The temperature of bar BC is lowered 25ºK and that of the bar ED is raised 25ºK. 

Neglecting any possibility of lateral buckling, find the normal stresses in bars BC and ED. 

For BC, which is brass, assume E=90 GPa, =20×10
-6

 1/ºK and for ED, which is steel, 

take =12×10
-6

 1/ºK, E=200 GPa. The cross-sectional area of BC is 500 mm
2
, of ED is 

250 mm
2
. 

 

 

  0AM  

 

Pst×600×10
-3

-Pbr×250×10
-3

=0 

 

 

 

 

Pst=0.41666 Pbr ………..(1) 

 

600250

stbr 
           

 

600250

stst

st

brbr

br

EA

LP
TL

EA

LP
TL







 

 

 

 

 

 

 

 

 

 

8.333×10
-12

 Pst+26.666×10
-12

  Pbr=475×10
-9

 …………..(2) 

 

From equations (1) and (2) 

Pbr=15760.5 N , Pst=6566.77 N 

br= MPa521.31
10500

5.15760
6


 
 

Pst= MPa267.26
10250

77.6566
6


 
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Tbr )(
Fbr )(

Fst )( st

600

1020010250

10250
25102501012
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Torsion: 

              Torque is a moment that tends to twist a member about its longitudinal axis. 

When the torque is applied, the circles and longitudinal grid lines originally marked on the 

shaft tend to distort into the pattern shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Before deformation                              After deformation 

         

              Twisting causes the circles to remain circles and each longitudinal grid line 

deforms into a helix that intersects the circles at equal angles. Also, the cross sections at 

the ends of the shaft remain flat that is, they do not warp or bulge in or out and radial lines 

on these ends remain straight during the deformation. 

The Torsion Formula: 

              Consider a uniform circular shaft is subjected to a torque it can be shown 

that every section of the shaft is subjected to a state of pure shear. 

 

 

 

 

 

 

 

 

 

 

 

 

                   
J

T
   

T

T

T

T



max

r
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: The torsional shearing stress. 

T: The resultant internal torque acting on the cross section.  

: The distance from the centre (radial position). 

J: The polar moment of inertia of the cross sectional area. 

 

 

                   
J

Tr
max  

 

max: The maximum shear stress in the shaft, which occurs at the outer surface. 

r: The outer radius of the shaft. 

 

                   4

2
rJ


  

                   4

32
DJ


  

 

 

for a hollow shaft 

 

 

                   
J

Tr
  

                   
J

Tromax  

 

                   )(
32

)(
2

4444

ioio DDrrJ 


 

 

Angle of Twist (): 

              If a shaft of length L is subjected to a constant twisting moment along its 

length, then the angle of twist  through which one end of the shaft will twist relative to the 

other is: 

 

                   
GJ

TL
  

 

 

G: The shear modulus of elasticity or  

     modulus of rigidity.  

 

: Angle of twist, measured in rad 

or
ir

r

T

T

r



L

A
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              If the shaft is subjected to several different torques or the cross sectional area or 

shear modulus changes from one region to the next. The angle of twist of one end of the 

shaft with respect to the other is then found from: 

 

                   
GJ

TL
  

              In order to apply the above equation, we must develop a sign convention for the 

internal torque and the angle of twist of one end of the shaft with respect to the other end. 

To do this, we will use the right hand rule, whereby both the torque and angle of twist will 

be positive, provided the thumb is directed outward from the shaft when the fingers curl to 

give the tendency for rotation. 
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GJ

L

GJ

L

GJ

L CDBCAB
DA










107080
/  

 

Power Transmission (P): 

              Shaft and tubes having circular cross sections are often used to transmit 

power developed by a machine. 

                   
dt

d
TP


      , 




dt

d
 

 

: The shaft's angular velocity (rad/s). 

                    

                    TP  

              In SI units power is expressed in (watts) when torque is measured in (N.m) and  

in (rad/s). 

                   1 W=1 N.m/s 

              In the foot-pound-second or FPS system the units of power are (ft.lb/s); however 

horsepower (hp) is often used in engineering practice where: 

                   1 hp=550 ft.lb/s 

              For machinery the frequency of a shaft's rotation f is often reported. This is a 

measured of the number of revolutions or cycles the shaft per second and is expressed in 

hertz (1 Hz=1 cycle/s), 1 cycle=2 rad, then  =2f 

                   P=2fT 

 

 

 

Example 19: If a twisting moment of 1 KN.m is impressed upon a 50 mm diameter shaft, 

what is the maximum shearing stress developed? Also what is the angle of twist in a 1 m 

length of the shaft? The material is steel, for which G=85 GPa. 

 

 

                   
J

Tr
max  

 

                   6434 106135.0)1050(
3232

 


DJ  m
4
 

 

 

                   
6

33

max
106135.0

1025101







  

 

                   max=40.74979 MPa 
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GJ

TL
  

                   
69

3

106135.01085

1101



  

 

                   =0.01917 rad. 

 

 

 

 

 

Example 20: The pipe shown has an inner diameter of 80 mm and an outer diameter of 100 

mm. If its end is tightened against the support at A using a torque wrench at B, determine 

the shear stress developed in the material at the inner and outer walls along the central 

portion of the pipe when the 80 N forces are applied to the wrench.  

 

                   T=80×200×10
-3

+80×300×10
-3

 

                   T=40 N.m 

 

                   
J

Tr
  

                   )(
32

44

io DDJ 


 

 

                    4343 )1080()10100(
32

 


J  

 

                   J=5.7962×10
-6

 m
4
 

 

 Inner walls   ri=40 mm 

 

                   
J

Tri =
6

3

107962.5

104040







 

                    =0.276042 MPa 

 

 Outer walls   ro=50 mm 

 

                        
J

Tro =
6

3

107962.5

105040







 

                    =0.345053 MPa 
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Example 21: The gear motor can developed 0.1 hp when it turns at 80 rev/min. If the 

allowable shear stress for the shaft is allow=4 ksi, determine the smallest diameter of the 

shaft that can be used. 

 

                   
J

Tr
allow      

                    4
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                   P=T.                          


P
T   

 

                   P=0.1×550=55 lb/s 

                   =80×2/60=8.377 rad/s 

 

                    

                   
377.8

55
T =6.5655 lb.ft 

                   T=6.5655×12=78.786 lb.in 

 

                   3
3104

786.782







r =0.2323 in 

 

                   d=0.4646 in 
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Example 22: The assembly consists of a solid 15 mm diameter rod connected to the inside 

of a tube using a rigid disk at B. Determine the absolute maximum shear stress in the rod 

and in the tube. The tube has an outer diameter of 30 mm and a wall thickness of 3 mm. 

 

 

 

 

 

 The rod 

                   T=50 N.m 

                   r=7.5×10
-3

 m 

                    

                   4

2
rJ


  

                   43 )1075(
2




J  

                   J=4.97009×10
-9

 m
4
 

 

                   
J
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r   

 

                   
9
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






r =75.4512 MPa 

 

 

 The tube 

                   T=80 N.m 

                   r=15×10
-3

 m 
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2
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io rrJ 

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=25.559 MPa 
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Example 23: The tapered shaft shown below is made of a material having a shear modulus 

G. Determine the angle of twist of its end B when subjected to the torque.  
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Example 24: The gears attached to the fixed end steel shaft are subjected to the torques 

shown. If the shear modulus of elasticity is G=80 GPa and the shaft has a diameter of 14 

mm, determine the displacement of the tooth P on gear A. 

 

 

 

 

 

 Segment AC 

 

              150-TAC=0 

                   TAC=150 N.m 

          

 

 Segment CD 

                    

                   150-280+TCD=0 

                   TCD=130 N.m 

 

 Segment DE 

                   

                   -130-40+TDE=0 

                   TDE=170 N.m 

 

                   
GJ

TL
  

 

                   = TL
GJ

1
 

 

                   =  5.01703.01304.0150

)107(
2

1080

1
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

 
 

 

                   =-0.21211 rad 
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Example 25: A steel shaft ABC connecting three gears consists of a solid bar of diameter d 

between gears A and B and a hollow bar of outside diameter 1.25d and inside diameter d 

between gears B and C. Both bars have length 0.6 m. The gears transmit torques T1=240 
N.m, T2=540 N.m, and T3=300 N.m acting in the directions shown in the figure. The shear 
modulus of elasticity for the shaft is 80 GPa. a) what is the minimum permissible diameter 

d if the allowable shear stress in the shaft is 80 MPa?. b) what is the minimum permissible 
diameter d if the angle of twist between any two gears is limited to 4


?. 

   
 
 

 
 

 
TAB=240 N.m 
TBC=300 N.m 

a) 
1. For solid bar AB 

J= 4
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
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d  

d=0.0255 m 
d=25.5 mm           Answer 

 
 
b) 

1. For solid bar AB 
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LTAB  
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49

32
1080

6.0240
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4

d



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
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d=0.02263 m 
d=22.63 mm 
 

2. For hollow bar BC 
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
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d=0.02184 m 
d=21.84 mm 

 
 

d=0.02263 m 
d=22.63 mm                 Answer 

 
Example 26:  The shaft is subjected to a distributed torque along its length of t=10x

2
 

N.m/m, where x is in meters. If the maximum stress in the shaft is to remain constant at 80 

MPa, determine the required variation of the radius r of the shaft for 30  x  m 
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x
x

r 002982.0
10803

20
3

6
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





m 

 

r=2.982 x mm 

 

 
Example 26:  The shaft has a radius 50 mm and is subjected to a torque per unit length of 

100 N.m which is distributed uniformly over the shafts entire length 2 m. If it is fixed at its 

far end A, determine the angle of twist of end B. The shear modulus is 73.1 GPa. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
T(x)=100x 

 






2

0 439

2

0 )1050(
2

101.73

100)(




xdx

GJ

dxxT
 

 
2

0

2

439 2)1050(101.73

200














x


 

 

439 )1050(101.73

400





 

 
410786.2  rad 

 

=0.01596
o
 

 

m2

mmN /.100



 

 

37 

Statically Indeterminate: 
 

                       

 

 

                   TA-T+TB=0 

                   TA +TB=T 

 

                   A/B=0 

                   

                   0
GJ

LT

GJ

LT BCBACA  

 

 

 
            If T1>T2 
 

                   -TA-T2+T1-TB=0 

 

 

                   0
)( 3221 






GJ

LT

GJ

LTT

GJ

LT AAB  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 

T2 

L1 

L2 

L3 

T2 

T1 

T2 

T2 
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Example 27: The solid steel shaft shown has a diameter of 20 mm. If it is subjected to the 

two torques, determine the reactions at the fixed supports A and B. 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   -TB+800-500-TA=0 

 

                   TB+TA=300    …………………………………....(1) 

 

 

 

                   0
3.05.1)500(2.0










GJ

T

GJ

T

GJ

T AAB  

 

                   -0.2TB+1.5TA+750+0.3TA=0 

 

                   1.8TA-0.2TB=-750  …………………………...…(2) 

 

                   TA=-345 N.m 

 

                   TB=645 N.m 
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Example 28: The shaft shown below is made from  steel tube, which is bonded to a brass 

core. If a torque of T=250 lb.ft is applied at its end, plot the shear stress distribution along a 

radial line of its cross sectional area. Take Gst11.4×10
3
 ksi, Gbr=5.2×10

3
 ksi. 

 

 

 

 

 

 

 

 

 

 

 

Tst+Tbr=250×12=3000 lb.in………….(1) 

θ=θst=θbr 

])5.0()1[(
2

102.5])5.0()1[(
2

104.11 446446 






LTLT brst  

Tst=32.88Tbr……………………….(2) 

From (1) and (2) 

Tst=2911 lb.in=242.6 lb.ft 

Tbr=88.5 lb.in=7.38 lb.ft 
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)5.0(
2

5.05.88
)(

4
max 



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  
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



  

psist 988
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2
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min 







  
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Torsion of Solid Noncircular Shafts: 
 

Shape of cross section max  

 

 

                           Square 

 

 

  

 

 

                           Equilateral 

                             triangle 

 

 

  

 

 

                            Ellipse  

 

 

  

 

 

 

Example 28: The 2014-T6 aluminum strut is fixed between the two walls at A and B. If it 

has a 2 in by 2 in square cross section and it is subjected to the torsional loading shown, 

determine the reactions at the fixed supports. Also what is the angle of twist at C. Take 

G=3.9×103 ksi. 

 

 

 

 

                   TA-40-20+TB=0 

 

                   TA+TB=60          ……….(1) 

 

                   A/B=0 
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                   TA-2TB=-20   ………………(2) 

             

          From equations (1) and (2) 

 

                   TB=26.666 lb.ft 

                   TA=33.333 lb.ft 

 

                        
Ga

LTA
C 4

1.7
  

 

                   
64 109.32

12212333.331.7




C  

 

                   C=0.001092 rad 

 

                   C=0.06258º 

 

 

Thin walled tubes having closed cross sections: 
Shear flow(q): is the product of the tube's thickness and the average shear stress. This value 

is constant at all points along the tube's cross section. As a result, the largest average shear 

stress on the cross section occurs where the tube's thickness is smallest.  
 

 

 

 

 

 

 

 

 

 

                       The forces acting on the two faces are dFA=A(tAdx) , dFB=B(tBdx), these 

forces are equal for equilibrium, so that: 

                    

                   AtA=BtB 

                   q=avgt 

 

 

 

AT

BT

ftlb.40

ftlb.20
C

D
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Average shear stress(avg): 
 

             The average shear stress acting on the shaded 

Area dA=tds 

                   dF=avgdA=avgtds 

                   dT=dF×h=avgtds×h 

                   T=avgt  hds  

 

Area of triangle dAm=
2

1
hds 

                   hds=2dAm 

 

 

                   T=2avgt  mdA =2avgtAm 

 

                   avg=
mtA

T

2
 

 

avg: The average shear stress acting over the thickness of the tube. 

T: The resultant internal torque at the cross section. 

 t: The thickness of the tube where avg is to be determined. 

Am: The mean area enclosed within the boundary of the center line of the tube thickness. 

 

                   q=avgt=
mA

T

2
 

 

Angle of Twist(): 

 

                   
t

ds

GA

TL

m

24
  

 

 

 

 

 

 

 

 

 

 



 

 

43 

Example 29: The tube is made of C86100 bronze and has a rectangular cross section as 

shown below. If its subjected to the two torques, determine the average shear stress in the 

tube at points A and B. Also, what is the angle of twist of end C? The tube is fixed at E. 

Take G=38 GPa. 

 

 

 

 

 

 

 

 

 

 

                   60-25-T=0 

                   T=35 N.m 

 

 

                   Am=(40×10
-3

-5×10
-3

)(60×10
-3

-3×10
-3

) 

                       =0.001995 m
2
    

 

     

                   A=
mtA

T

2
=

001995.01052

35
3  

 

                    A=1.7543859 MPa         

                    

 

                   B=
mtA

T

2
=

001995.01032

35
3  

 

                   B=2.9239766 MPa 

 

                    
t

ds

GA

TL

m

24
  

                 

                   = 

 

 

 

                   =0.0062912 rad          
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Example 30: A thin tube is made from three 5 mm thick A-36 steel plates such that it has a 

cross section that is triangular as shown below. Determine the maximum torque T to which 

it can be subjected, if the allowable shear stress is allow=90 MPa and the tube is restricted 

to twist no more than =2×10
-3

 rad. Take G=75 GPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   A=
2

1
(200×10

-3
)× (200×10

-3
 sin60)=0.01732 m

2
 

                   t=0.005 m 

                   allow=
mtA

T

2
=

01732.01052 3  

T
=90×10

6
 

                   T=15.588 KN.m 

 

                   
t

ds

GA

TL

m

24
  

                   2×10
-3

= ]
105

10200
3[

1075)01732.0(4

3
3

3

92 






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T
 

 

                   T=500 N.m  
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Thin Walled Cylinder, Thin Walled Pressure Vessels: 

              Cylindrical or spherical vessels are commonly used in industry to serve as boilers 

or tanks. When under pressure, the material of which they are made is subjected to a 

loading from all directions. In general "thin wall" refers to a vessel having an inner radius 

to wall thickness ratio of 10 or more (r/t  10) 

1. Cylindrical Vessels: 
       Consider the cylindrical vessel having a wall thickness t and inner radius r as 

shown below. A pressure p is developed within the vessel by a containing gas or fluid, 

which is assumed to have negligible weight.  

 

 

 

 

 

 

The stresses set up in the walls are: 

a. Circumferential or hoop stress 

               

              2[1(tdy)]-p(2rdy)=0   

               
t

pr
1  

 

 

 

 

 

b. Longitudinal or axial stress 

 

 

               2(2rt)-p(r
2
)=0 

         

               
t

pr

2
2   

 

 

 

c. Circumferential or hoop strain 

)(
1

211  
E

 

d. Longitudinal  strain 

)(
1

122  
E
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e. Change in length 

           The change in length of the cylinder may be determined from the 

longitudinal strain. 

Change in length=longitudinal strain×original length 

L=ε2L= )(
1

12  
E

L 

L= )21(
2


tE

pr
L 

 

f. Change in diameter 

           The change in diameter may be found from the circumferential change. 

Change in diameter=diametral strain×original diameter 

Diametral strain=circumferential strain 

d= ε1d= )(
1

21  
E

d 

d= )2(
2


tE

pr
d 

 

g. Change in internal volume 

Volumetric strain=longitudinal strain+2diametral strain 

εv= ε2+2 ε1= )(
1

12  
E

+2 )(
1

21  
E

            diametral strain          

 

εv= )22(
1

2112  
E

                                                         longitudinal strain 

   = )2
2

(
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t
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t

pr

t

pr

t

pr

E
                                                    diametral strain 

εv= )45(
2


tE

pr
 

 

                change in internal volume=volumetric strain×original volume 

                 v= εvv 

                 v= )45(
2


tE

pr
v 
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2. Spherical Vessels: 
         Because of the symmetry of the sphere the stresses set up owing to internal 

pressure will be two mutually perpendicular hoop or circumferential stress of equal 

value and a radial stress. 

 

 

 

 

 

 

 

 

 

 

 

            

 

                   1(2rt)-p(r
2
)=0 

 

                   
t

pr

2
1   

 

                   2=
t

pr

2
1   

 

Change in internal volume  

               

      change in internal volume=volumetric strain×original volume 

      volumetric strain=3hoop strain 

 

                   εv= ε1=3 )(
1

21  
E

= )1(
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


E

= )1(
2
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tE
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                   v= εvv 

                   v = )1(
2

3
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tE
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Cylindrical Vessels with Hemispherical Ends: 

   
        r=d/2 

 

 

a) For the cylindrical portion 

                   
ct

Pr
1      hoop stress 

                   
ct2

Pr
2    longitudinal stress 

 

                       )(
1

211  
E

= )
2

PrPr
(

1

cc ttE
  

                        ε1= )2(
2


Et

pr
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         hoop strain 

 

 

b) For the spherical ends 

 

                        
st2

Pr
1                  hoop stress 

                        )(
1

211  
E

= )1(1 



E

 

                         ε1= )1(
2


Et

pr

s

       hoop strain  

 

              Thus equating the two strains in order that there shall be no distortion of the 

junction.  

                 

      

                   )1(
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
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
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
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c

s

t
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Example 31: A thin cylinder 75 mm internal diameter, 250 mm long with walls 2.5 mm 

thick is subjected to an internal pressure of 7 MN/m
2
. Determine the change in internal 

diameter and the change in length. If in addition to the internal pressure, the cylinder is 

subjected to a torque of 200 N.m find the magnitude and nature of the stresses set up in the 

cylinder.E=200 GN/m
2
, υ=0.3. 

 

 

                   d= )2(
2


tE

pr
d 

                                 d= 3
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
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                                 d=33.468×10
-6

 m=33.468 μm 

  

                  L= )21(
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
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L 
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                                L=26.25×10
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 m=26.25 μm 
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                 1=105×10
6
  N/m

2
=105 MN/m

2
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2
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                              2=52.5×10
6
  N/m

2
=52.5 MN/m

2
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Example 32: A cylinder has an internal diameter of 230 mm, has walls 5 mm thick and is 1 

m long. It is found to change in internal volume by 12×10
-6

 m
3
 when filled with a liquid at 

a pressure p. If E=200 GN/m
2 
and υ=0.25, and assuming rigid end plates, determine a) the 

values of hoop and longitudinal stresses b) the necessary change in pressure p to produce a 

further increase in internal volume of 15%. 

 

      a)           v= )45(
2


tE

pr
v 

                   12×10
-6

= 1)10
2

230
(]25.045[

102001052
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
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                   p=1.255763 MN/m
2
 

 

                   
t
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1 =
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


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                   1=28.882549 MN/m
2
 

 

                   
t
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2
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                   2=14.4412745 MN/m
2
 

 

b)                 v=1.15×12×10
-6

=13.8×10
-6

 m
3
  

                     

                   v= )45(
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                   p=1.444128 MN/m
2
 

 

                   Necessary increase=1.444128-1.255763=0.188365 MN/m
2
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Vessels Subjected to Fluid Pressure: 

              If a fluid is used as the pressurization medium the fluid itself will change in 

volume as pressure is increased and this must be taken into account when calculating the 

amount of fluid which must be pumped into the cylinder in order to raise the pressure by a 

specific amount.  

              The bulk modulus of a fluid is defined as: 

                   bulk modulus k=
strainVolumetric

stressVolumetric
  

                   volumetric stress=pressure p 

                   volumetric strain=
volumeoriginal

volumeinchange
=

v

v
 

                   k=

v

v

p


=

v

pv


 

                   change in volume of fluid under pressure=
k

pv
 

                   extra fluid required to raise cylinder pressure by p 

 

                   = )45(
2


tE

pr
v+

k

pv
 

 

                   extra fluid required to raise sphere pressure by p 

 

                  = )1(
2

3


tE

pr
v+

k

pv
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Example 33: a) A sphere 1m internal diameter and 6 mm wall thickness is to be pressure 

tested for safety purposes with water as the pressure medium. Assuming that the sphere is 

initially filled with water at atmospheric pressure, what extra volume of water is required 

to be pumped in to produce a pressure of 3 MN/m
2
 gauge?  For water k=2.1 GN/m

2
          

b) The sphere is now placed in service and filled with gas until there is a volume change of 

72×10
-6

 m
3
. Determine the pressure exerted by the gas on the walls of the sphere. c) To 

what value can the gas pressure be increased before failure occurs according to the 

maximum principal stress theory of elastic failure? E=200 GPa, υ=0.3 and the yield stress 

is simple tension=280 MPa. 

 

a) extra volume of water= )1(
2

3


tE

pr
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k

pv
 

 

                                      =
9
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3
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



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                                      =0.001435221 m
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                   p=0.31430827 MN/m
2
 

 

                  
t

pr

2
1                     1=yield stress for maximum principal stress theory 

 

                   280×10
6
=

31062
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                   p=6.72 MN/m
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Shear and Moment Diagram: 

              Beams are long straight members that carry loads perpendicular to their 

longitudinal axis. They are classified according to the way they are supported, e.g. simply 

supported, cantilevered, or overhanging.  

 

 

 

 

 

 

 

 

 

 

Simply supported beam                                        overhanging beam 

 

 

 

 

 

 

 

 

 

         Cantilevered beam 

 

 

 

Types of Loading: 

              Loads commonly applied to a beam may consist of concentrated forces(applied at 

a point), uniformly distributed loads, in which case the magnitude is expressed as a certain 

number of newtons per meter of length of the beam, or uniformly varying loads. A beam 

may also be loaded by an applied couple. 

 

 

 

                                                                                     (point load) 

                                                                                (concentrated force) 

 

  

 

P P

P

N100
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V V

MM

V V
M

 

 

 

 

 

 

                  Uniformly distributed load                                  Uniformly varying load 

 

              Shearing force and bending moment diagrams show the variation of these 

quantities along the length of a beam for any fixed loading condition. At every section in a 

beam carrying transverse loads there will be resultant forces on either side of the section 

which, for equilibrium, must be equal and opposite. 

              Shearing force at the section is defined as the algebraic sum of the forces taken on 

one side of the section. The bending moment is defined as the algebraic sum of the 

moments of the forces about the section, taken on either side of the section. 

Sign Convention:  
              Forces upwards to the left of a section or downwards to the right of a section are 

positive. Clockwise moments to the left and counter clockwise to the right are positive. 

 

 

 

                     

                                                                                         -                                 - 

 

 

 

Procedure of Analysis: 
              The shear and moment diagrams for a beam can be constructed using the 

following procedure:- 

1. Determine all the reactive forces and couple moments acting on the beam, and 

resolve all the forces into components acting perpendicular and parallel to the beam's 

axis. 

2. Specify separate coordinates x having an origin at the beam's left end extending to 

regions of the beam between concentrated forces and/or couple moments, or where 

there is no discontinuity of distributed loading. 

3. Section the beam perpendicular to its axis at each distance x, and draw the free body 

diagram of one of the segments. Be sure V and M are shown acting in their positive 

sense, in accordance with the sign convention given as above. 

4. The shear is obtained by summing forces perpendicular to the beam's axis. 

5. The moment is obtained by summing moment about the sectioned end of the 

segment. 

mN /10 mN /10

m4 m5

mN /5

M
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6. Plot the shear diagram(V versus x) and the moment diagram(M versus x). If 

numerical values of the functions describing V and M are positive, the values are 

plotted above the x-axis, whereas negative values are plotted below the axis. 

 

    

Example 33: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

 

 

 

 

 

 

 

 

                0xF  

              Ax=0 

                0CM  

              P×L/2-Ay×L=0 

              Ay=P/2 

                0yF  

              Cy+Ay-P=0 

              Cy=P/2 

 

 Segment AB 

                0yF  

              
2

P
-V=0 

              V=
2

P
 

                0M  

              M-
2

P
×x=0 

              M=
2

P
x 

 Segment BC 

 

 

                0yF  

A

P

B C
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xA

P
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yC
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P

x

V M

2

P

x

V

M
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2

P
-P-V=0 

              V=-
2

P
 

                0M  

              M-
2

P
×x+P(x-

2

L
)=0 

              M=
2

P
(L-x) 

     

           

 

 

 

 

 

 

 

 

 

S.F. diagram 

 

 

 

 

 

 

 

B.M. diagram 
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Example 34: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

 

 

 

 

 

 

 

 

                0xF  

              Fx=0 

                0FM  

              -Ay×12+10×10-20×8+20×6 

                            +30×2=0 

              Ay=10 KN 

                0yF  

              10-10+20-20-30+Fy=0 

              Fy=30 KN 

 Segment AB        20  x        

                         

                0yF  

              10-V=0 

              V=10 KN 

                0M  

              M-10×x=0 

              M=10x 

 

 Segment BC        42  x        

 

                0yF  

              10-10-V=0 

              V=0   

                0M  

              M-10x+10(x-2)=0 

              M=20 KN.m 

 Segment CD        64  x      

   

                0yF  

A

KN10

C

m4 m8
KN20

KN20 KN30

B D E F

m4 m2m2

A

KN10

C

m4 m8
KN20

KN20 KN30

B D E F

m4 m2m2

yA
yF

xF

KN10

x

V M

KN10
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              10-10+20-V=0 

              V=20 KN   

                0M  

              M-10x+10(x-2)-20(x-4)=0 

              M=20(x-3) 

 

 Segment DE        106  x      

 

                0yF  

              10-10+20-20-V=0 

              V=0 

                0M  

              M-10x+10(x-2)-20(x-4)+20(x-6)=0 

              M=60 KN.m 

 

 Segment EF        1210  x     

  

                0yF  

              10-10+20-20-30-V=0 

              V=-30 KN 

                0M  

              M-10x+10(x-2)-20(x-4)+20(x-6) 

                                                  +30(x-10)=0 

              M=30(12-x) 
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V M
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V M
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KN20
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KN20 KN30
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S.F Diagram 

 

 

 

 

 

 

 

 

 

 

 

B.M. Diagram 
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Example 35: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

 

 

 

 

 

 

 

 

                0xF  

              Ax=0 
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Location of maximum moment 
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S.F Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.M Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B

L

w

2

wL
2

wL

2

wL

2/L

2/L

8

2

max

wL
M 



 

 

62 

 

Example 36: Draw the shear and moment diagrams for the beam shown below. 
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              Ax=0 
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              Ay=
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S.F Diagram 
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Example 37: The horizontal beam AD is loaded by a uniform distributed load of 5 KN per 

meter of length and is also subjected to the concentrated force of 10 KN applied as shown 

below. Determine the shearing force and bending moment diagrams. 

 

                0xF  

              Ax=0 

                0AM  

              Cy×3-30×2=0 

              Cy=20 KN 

                0yF  

              Ay+20-30=0 

              Ay=10 KN 

 

 

 

 

 Segment AB       20  x  

              

                0yF  

              10-5x-V=0 

              V=10-5x 

                0M  

              M-10x+5x
2

x
=0 

              M=5x(2-
2

x
) 

 

 Segment BC       32  x  

 

                0yF  

              10-5x-10-V=0 

              V=-5x 

                0M  

              M-10x+5x
2

x
+10(x-2)=0 

              M=20-
2

5
x

2
 

 

 

 Segment CD       43  x  
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                0yF  

              10-5x-10+20-V=0 

              V=20-5x 

                0M  

              M-10x+5x
2

x
+10(x-2)-20(x-3)=0 

              M=-40+20x-
2

5
x
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S.F Diagram 

 

 

 

 

 

 

 

 

 

 

B.M Diagram 
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Example 38: A beam ABC is simply supported at A and B and has an overhang BC. The 

beam is loaded by two forces P and a clockwise couple of moment Pa that act through the 

arrangement shown. Draw the shear force and bending moment diagrams for beam ABC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                0DM  

              -Pa+RC(2a)-Pa=0 

              RC=P 

                0yF  

              RD+P-P-P=0 

              RD=P 

                0AM  

              RB(2a)-Pa-P(3a)=0 

              RB=2P 

                0yF  

              RA+2P-P-P=0 

              RA=0 

 Segment AD       ax 0  

                0yF  

              V=0 

                0M  

              M=0 

 

 

 

 

 

 Segment DB       axa 2  

 

a a a a
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                0yF  

              -V-P=0 

              V=-P 

                0M  

              M+P(x-a)=0 

              M=P(a-x) 

 Segment DB       axa 32   

 

                0yF  

              2P-P-V=0 

              V=P 

                0M  

              M+P(x-a)-2P(x-2a)=0 

              M=P(x-3a) 

 

  

 

 

 

 

 

 

S.F. Diagram 

 

 

 

 

 

 

 

 

 

B.M. Diagram 
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Graphical Method for Constructing Shear and Moment Diagram: 
 

 

 

 

 

 

 

              )(xw
dx

dV
  

Slope of shear diagram at each point=-distributed load intensity at each point. 

              V
dx

dM
  

Slope of moment diagram at each point=shear at each point. 

 When the force acts downward on the beam, V is negative so the shear will jump 

downward. Likewise, if the force acts upward, the jump will be upward. 

 If moment Mo is applied clockwise on the beam, M is positive so the moment 

diagram will jump upward. Likewise, when Mo acts counterclockwise, the jump will 

be downward.    
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Example 39: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

 

                0xF  

              Ax=0 

                0yF  

              Ay-P=0 

              Ay=P 

                0AM  

              M-PL=0 

              M=PL 

 

 

 

 

 

At x=0    V=P 

At x=L   V=P 

 

 

 

 

 

 

 

 

At x=0    M=-PL 

At x=L   M=0 
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Example 40: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

                0AM  

              By×5.5-10-60×2=0 

              By=23.63 KN 

                0yF  

              23.63+Ay-60=0 

              Ay=36.37 Kn 

                0xF  

              Ax=0 
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KN63.23

m4 m5.0 m1
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KN63.23KN63.23
63.23

4

37.36

xx 
  

23.63x=36.37×4-36.37x 

x=2.4246 m 

Maximum bending moment occur 

when V=0, at x=2.4246 m 

x

x4

mKN.092.44

mKN.48.25
mKN.665.23

mKN.665.13
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Example 41: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

 

           0CM  

         80-RB×6+30×7.5+144×4=0 

         RB=146.83 KN 

           0yF  

         RC+146.83-30-144=0 

         RC=27.17 KN 
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mKN.45
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mKN.187.47

For segment 63  x  

V=116.83+4(x-3)
2
-48(x-3) 

Maximum bending moment occur when 

V=0 

0=116.83+4(x-3)
2
-48(x-3) 

x
2
-18x+74.2075=0 

x=6.39375 m from left end  

m39375.3
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Example 42: Draw the shear and moment diagrams for the beam shown below. 

 

 

 

 

           0xF  

         Ax=0 

           0AM  

         By×6-9×7=0 

         By=10.5 KN 

           0yF  

         Ay+10.5-9=0 

         Ay=-1.5 KN 
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Stresses in Beams: 

              Pure bending refers to flexure of a beam under a constant bending moment. 

Therefore, pure bending occurs only in regions of a beam where the shear force is zero. 

Nonuniform bending refers to flexure in the presence of shear forces, which means that the 

bending moment changes as we move along the axis of the beam.          

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                           S.F. Diagram 

 

 

 

 

 

                                                                                             B.M. Diagram 

 

          Nonuniform bending                                    Pure bending 

 

Assumptions: 
1. The beam is initially straight and unstressed. 

2. The material of the beam is perfectly homogeneous. 

3. The elastic limit is nowhere exceeded. 

4. Young's modulus for the material is the same in tension and compression. 

5. Plane cross-sections remain plane before and after bending. 

6. Every cross-section of the beam is symmetrical about the plane of bending i.e. about 

an axis perpendicular to the N.A. 

7. There is no resultant force perpendicular to any cross-section. 

 

If we now considered a beam initially unstressed and subjected to a constant bending 

moment along its length, i.e. pure bending as would be obtained by applying equal couples 

at each end, it will bend to a radius  as shown below. 

 

  

P P

a a

P

P

Pa
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              As a result of this bending the top fibers of the beam will be subjected to 

compression and the bottom to tension. Its reasonable to suppose, that somewhere between 

the two there are points at which the stress is zero, these points is termed the neutral axis. 

The neutral axis will always pass through the centre of area or centroid. 

              The length L1 of the line ef  after bending takes place is: 

              L1=(-y)d 

              d=


dx
 

              L1=(1-


y
)dx 

              The original length of line ef is dx 

              Strain(εx)=
lengthoriginal

lengthoriginalL 1 =
dx

dxdx
y

 )1(


= -


y
 

              εx=-ky 

              where k is the curvature. 

              The longitudinal normal strain will vary linearly with y from the neutral axis. A 

contraction (-εx) will occur in fibers located above the neutral axis (+y), whereas 

elongation (+εx) will occur in fibers located below the neutral axis (-y). 

 

 

 

 

 

                                                   N.A 

 

 

              εx=-(
1c

y
) εmax 

              By using Hook's law x=Eεx 

              x=-Eky=-


E
y 

max

εx 
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                                           N.A 

 

 

                                               

              x=-(
1c

y
) max 

              Normal stress will vary linearly with y from the neutral axis. Stress will vary from 

zero at the neutral axis to a maximum value max a distance c1 farthest from neutral axis. 

 

 

 

 

 

 

                                                       N.A. 

 

 

 

              dF=xdA 

              M= 
A

ydF = ydA
A

x )(  

                            =  
A

ydA
c

y
)( max

1

    

              M= 
A

dAy
c

2

1

max
 

              
A

dAy 2 =I   moment of inertia  

              
I

Mc1
max   

max: The maximum normal stress in the member, which occurs at a point on the cross 

sectional area farthest away from the neutral axis. 

M: The resultant internal moment. 

I: The moment of inertia of the cross sectional area computed about the neutral axis. 

c1: The perpendicular distance from the neutral axis to a point farthest away from the 

neutral axis, where max acts. 

 

 

 

max
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              1=-
I

Mc1        , 2=
I

Mc2      

              1=-
1S

M
         ,  2=

2S

M
  

              S1=
1c

I
           ,  S2= 

2c

I
 

               

              The quantities S1 and S2 are known as the section moduli of the cross sectional 

area. 

 

 

 

 

Example 43: A simple beam AB of span length L=22 ft supports a uniform load of 

intensity q=1.5 k/ft and a concentrated load P=12 k. The uniform load includes an 

allowance for the weight of the beam. The concentrated load acts at a point 9 ft from the 

left hand end of the beam. The beam is constructed of glued laminated wood and has a 

cross section of width b=8.75 in and height h=27 in. Determine the maximum tensile and 

compressive stresses in the beam due to bending. 
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ft9
kP 12
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A B
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                0AM  

              By×22-12×9-33×11=0 

              By=21.409 k 

                0yF  

              Ay+21.409-12-33=0 

              Ay=23.591 k 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                S.F. Diagram 

 

 

 

 

 

 

 

                                                                                                                B.M. Diagram 

 

 

 

k12 k33

yA yB

ft9
kP 12

ftkq /5.1

k591.23 k409.21

k591.23

k409.21

k091.10

k909.1

ftk.569.151

Maximum bending moment 

Mmax=151.569 k.ft 

        =151.569×12 

        =1818.828 ksi  
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Example 44: The simply supported beam has the cross sectional area shown below. 

Determine the absolute maximum bending stress in the beam and draw the stress 

distribution over the cross section at this location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in75.8

in271c

2c

c1=c2=13.5 in 

1=
I

Mc1  

I=
12

3bh
= 4

3

1875.14352
12

)27(75.8
in


 

1=
1875.14352

5.1310828.1818 3 
  

=-1710.8317 psi 

1=
1875.14352

5.1310828.1818 3 
 

=1710.8317 psi 
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                0AM  

              By×6-30×3=0 

              By=15 KN 

                0yF  

              Ay+15-30=0 

              Ay=15 KN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

 

                                                         

                                                        

                                                         N.A 

 

              c1=c2=170 mm 

              I1=
2

3

12
Ad

bh
  

 

              I1=  2333
333

)10160()102010250(
12

)1020(10250 





 

              I1=128.16667×10
-6

 m
4
 

              I3=I1=128.16667×10
-6

 m
4
      

              I2=
12

3bh
=

12

)10300()1020( 333  
=45×10

-6
 m

4
 

              I= I1+ I2+ I3=128.16667×10
-6

+128.16667×10
-6

+45×10
-6

 

              I=301.333×10
-6

 m
4
 

              max=
I

Mc1 =
6

33

10333.301

10170105.22







 

                    =12.693598 MPa. 
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KN15 KN15
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KN15
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Maximum bending moment 

Mmax=22.5 KN.m 
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              B=
I

MyB  

              =
6

33

10333.301

10150105.22







 

    =11.200233 MPa. 

 

 

 

 

 

 

 

 

 

Example 45: The beam shown below has a cross section of channel shape with width 

b=300 mm and height h=80 mm, the web thickness is t=12 mm. Determine the maximum 

tensile and compressive stresses in the beam due to uniform load.  

 

 

 

 

 

 

 

 

 

  0AM  

By×3-14.4×2.25=0 

By=10.8 KN 

  0yF  

Ay+10.8-14.4=0 

Ay=3.6 KN 

  0xF  
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             M1=2.025 KN.m 

             M2=3.6 KN.m 
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yc  

 

 

 

 

 

 

 

 

 

 

6

9

105232

10321888







cy =61.52×10

-3
 m 

yc=61.52 mm 

 

 

 

 

I1=
2

3

12
Ad

bh
  

No. of Area A(m
2
) y (m) Ay (m

3
) 

1 960×10
-6

 40×10
-3

 38400×10
-9

 

2 3312×10
-6

 74×10
-3

 245088×10
-9

 

3 960×10
-6

 40×10
-3

 38400×10
-9

 

  A =5232×10
-6

   Ay =321888×10
-9

 

KN6.3 KN8.10

KN6.3

KN6

KN8.4

mKN.025.2

mKN.6.3

mm300

mm80

mm12

1

2

3

mm80
mm12

mm300

mmc 52.611 

mmc 48.182 
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I1=
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)1080(1012 333  
+960×10

-6
×(21.52×10

-3
)

2
=0.95658×10

-6
 m

4
 

I3= I1=0.95658×10
-6
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4
 

I2=
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3
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I2=
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)1012(10276 333  
+3312×10

-6
×(12.48×10

-3
)

2
=0.55558×10

-6
 m

4
 

I= I1+ I2+ I3=2.46874×10
-6

 m
4
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1046874.2

1052.6110025.2
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33
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





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1046874.2

1048.18106.3
)(

6

33
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2 










I

cM
t  MPa 

(t)max=50.462179 MPa 

158339.15
1046874.2

1048.1810025.2
)(

6

33
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1 










I

cM
c  MPa 

71054.89
1046874.2

1052.61106.3
)(

6

33

22
2 










I

cM
c  MPa 

(c)max=-89.71054 MPa 

 

 

 

Composite Beams: 

              Composite beams are made from different materials in order to efficiently carry a 

load. 

 

 

 

 

 

 

 

 

 

Normal stress in material 1 is determined from =E1ε 

Normal stress in material 2 is determined from =E2ε 

dA=dydz 

The force dF acting on the area dA of the beam is  

 

dF=dA=( E1ε)dydz 

If the material 1 is being transformed into material 2 

b2=nb 
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AdFd  =( E2ε)ndydz 

dF= Fd  

 ( E1ε)dydz=( E2ε)ndydz 

n=
2

1

E

E
 

n: transformation factor (modular ratio). 

 

 

 

If the material 2 is being transformed into material 1 

 

 

 

 

 

 

 

 

 

 

 

b1= n b  where  n =
1

2

E

E
 

For the transformed material 

=n  
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Example 46: A composite beam is made of wood and reinforced with a steel strap located 

on its bottom side. It has the cross sectional area shown below. If the beam is subjected to a 

bending moment of M=2 KN.m determine the normal stress at point B and C. Take Ew=12 

GPa and Est=200 GPa. 

 

 

 

st

w

E

E
n   

06.0
200

12
n  

wst bnb   

mmbst 915006.0   
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 


A

Ay
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I=I1+I2 

2
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1
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bh

I   
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)1020(10150 
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

I  

I1=2.187554×10
-6

  m
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2
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2 )10621.58(101350
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I2=7.170419×10
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4
 

I=9.35797×10
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  m
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I
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B   
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1035797.9

10621.133102
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33











  

BB n    
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I
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


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No. of Area A(m
2
) y (m) Ay (m

3
) 

1 3000×10
-6

 10×10
-3

 30000×10
-9

 

2 1350×10
-6

 95×10
-3

 128250×10
-9

 

  A =4350×10
-6

   Ay =158250×10
-9
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mm150

mm9

mm20

mmc 621.1331 

mmc 379.362 
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Shear Stresses in Beams 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         



A

ydA
It

V
    

                                   

AyydA
A




=Q  

It

VQ
  

 :- the shear stress in the member at the point located a distance y  from the neutral axis. 

V:-the internal resultant shear force. 

I:-the moment of inertia of the entire cross sectional area computed about the neutral axis. 

t:-the width of the members cross sectional area, measured at the point where   is to be 

determined. 

Q Ay  , where A  is the top (or bottom) portion of the members cross sectional area, 

defined from the section where t is measured, and y  is the distance to the centroid of A , 

measured from the neutral axis. 
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Example 47: A metal beam with span L=3 ft is simply supported at points A and B. The 

uniform load on the beam is q=160 lb/in. The cross section of the beam is rectangular with 

width b=1 in and height h=4 in. Determine the normal stress and shear stress at point C, 

which is located 1 in below the top of the beam and 8 in from the right hand support. 

 

 

  0AM  

By×3×12-5760×1.5×12=0 

By=2880 lb 

  0yF  

Ay+2880-5760=0 

Ay=2880 lb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B
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inlbq /160

C

lb5760

yA yB
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inlbq /160

lb2880

in18

inkM .92.25max 

lb2880

lb2880

in18

C

in8

V

18

2880

10


V
 

 

V=1600 lb 
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At point C x=28 in from left end 

from  shear force diagram  

 

 

 

 

 

                                                                          N.A  
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A=1×1=1 in
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y=1.5 in 

Q Ay  =1.5×1=1.5 in
3 
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Example 48: Consider the cantilever beam subjected to the concentrated load shown 

below. The cross section of the beam is of T-shape. Determine the maximum shearing 

stress in the beam and also determine the shearing stress 25 mm from the top surface of the 

beam of a section adjacent to the supporting wall. 

 

 

   0AM  

M-50×2=0 

M=100 KN.m 

  0yF  

Ay-50=0 

Ay=50 KN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.F. Diagram 

 

 

 

 

 

B.M. Diagram 

 

 

 

 

From shear and bending moment diagrams  

V=50 KN 

M=100 KN.m 
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I=39.6684×10
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4
 

 

 

 

 

 

 

Q Ay   

A=50×10
-3

×116.35×10
-3

 

    =0.0058175 m
2
 

y=58.175×10
-3

 m 

Q=0.000338433 m
3
 

It

VQ
max  

MPa5315553.8
1050106684.39

000338433.01050
36

3

max 






  

 

No. of Area A(m
2
) y (m) Ay (m

3
) 

1 10000×10
-6

 25×10
-3

 250000×10
-9

 

2 6250×10
-6

 112.5×10
-3

 703125×10
-9

 

  A =16250×10
-6

   Ay =953125×10
-9
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mmc 35.1161 
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mmc 65.582 

mmc 35.1161 
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Q Ay   
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Curved Beams 

Due to the curvature of the beam, the normal strain in the beam does not vary linearly with depth as in the 

case of a straight beam .As result, the neutral axis does not pass through the centroid of the cross section. 

 
C7 

 
 

If we isolate a differential segment of the beam let a strip material located at r distance has an original length 

r dθ .Due to the rotations δθ/2, the strip's total change in length is δθ(R-r) 

 

 

 

 

Strain is a nonlinear function of r, in fact it varies in a hyperbolic fashion .Hooke's law applies, 
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)( yRAe

My




 

 

 

 

R :- The location of the neutral axis, specified from the center of curvature  0' of the member. 

A :- The cross -sectional area of the member. 

r :- The  arbitrary position of the area element dAon the cross section, specified from the center of 

curvature 0' of the member. 

 

 

 

 

 

 

 

 

 

y=R-r , e= r -R 

ζ :- The normal stress in the member. 

M :- The internal moment, determined from the method of sections equations of equilibrium and computed about 

the centroidal axis . 

A :- The cross-sectional area of the member. 

R :- The distance measured from the center of curvature to the neutral axis. 

r :- The distance measured from the center of curvature to the centroid of the cross-sectional area. 

r :- The distance measured from the center of curvature to the point where the stress σ is to be determined. 




A
r

dA

A
R
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)(
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RrAr

RrM
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o
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



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RrAr

rRM

i

i
i




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                                  Normal stress at the bar's top. 

 

  

                                   Normal stress at the bar's bottom. 

 

 

 

 

Example:-The curved bar has a cross-sectional area shown below .If it is subjected to bending moments of 4 

kN • m, determine the maximum normal stress developed in the bar. 

 

Area A(mm
2
) y

-
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-
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3
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rectangle 2500 225 562500 

triangle 750 260 195000 
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
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MPa
RrAr
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i
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
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maximum stress at point A= MPa7231.128  

 

Example:-The frame of a punch press is shown below. Find the stresses at the inner and outer surface at 

section x-x of the frame if W=5000 N. 
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Area(mm
2
) A(mm

2
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-
(mm) y

-
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3
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rectangle 720 45 32400 
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Slop and Deflection in Beams 

             The elastic curve :-the deflection diagram of the longitudinal axis that passes 

through the centroid of each cross sectional area of the beam. 
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x-axis extends positive to the right. 

v-axis extends positive upward from the x-axis. 

y
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

1
 

 

 

 

 
      When M is positive,   extends above the beam, i.e.   in the positive v direction. 

When M is negative,   extends below the beam, or in the negative v direction. 

 

 

Integration Method  

           The elastic curve for a beam can be expressed mathematically as v=f(x) 

2/32
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           The slop of the elastic curve which is determined from dv/dx will be very small, and 

its square will be negligible compared with unity. 
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dx
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EI always positive quantity 
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Sign convention and coordinates  

 
 

        Positive deflection v is upward, the positive slope  will be measured 

counterclockwise from the x-axis when x is positive to the right. 

       If positive x is directed to the left, then  will be positive clockwise. 

 

dx

dv
  

 

 

 

 

 

 

 



 

 

111 

Boundary conditions 
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Example: The cantilevered beam shown is subjected to a vertical load P at its end. 

Determine the equation of elastic curve. EI is constant. 
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Boundary conditions 



 

 

111 

     at  x=L       

          
dx
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 =0     and     v =0 
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Example: The simply supported beam shown supports the triangular distributed loading. 

Determine the maximum deflection. EI is constant. 

 

 

 

 

 

 

 

 

 

Due to symmetry we take      0≤ x ≤
2

L
 

  0M  

0
34

3


L

xw
x

Lw
M                    )

34
(

3

L

x
x

L
wM      

)(
2

2

dx

vd
EIM  = )

34
(

3

L

x
x

L
w   

1

4
2

128
C

L

xw
x

Lw

dx

dv
EI     ………………….(1) 

 

21

5
3

6024
CxC

L

xw
x

Lw
EIv    ……..………..(2) 
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Boundary conditions 

  at   x=
2

L
      

dx

dv
 =0      

 

     1

4
2

128
0 C

L

xw
x

Lw
                      

192

5 3

1

Lw
C    

at x=0     v=0  

       0=0-0+0+C2                     C2=0 

  

)
192

5

6024
(

35
3 x

L

L

x
x

L

EI

w
v    

Vmax   at    x=
2

L
       

 

)
384

5

1920192
(

444

max

LLL

EI

w
v    =

EI

Lw 4

120

  

Discontinuity Method 

 
 



 

 

113 










axforax

axfor
ax

n

n

)(

0
 

 

C
n

ax
dxax

n

n









 1

1

 

 

 

 

Example:- Find the moment expression using continuity equations. 

 

 

 

 

 

 

 

 

 

 

 

 

M=2.75<x-0>
1
+1.5<x-3>

0
-

2

3
<x-3>

2
-

6

1
<x-3>

3
 

 =2.75x+1.5<x-3>
0
-

2

3
<x-3>

2
-

6

1
<x-3>

3
 

Example:- Determine the equation of the elastic curve for the beam shown below. EI is 

constant. 

 

 

 

 

 

 

 

 

 

 

 

  0yF  

Ay-40-12=0                          Ay=52 kN 

  0AM    

MA-40×2.5-50-12×9=0                  MA=258 kN.m 
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M=-258<x-0>
0
+52<x-0>

1
-

2

8
<x-0>

2
+50<x-5>

0
+

2

8
<x-5>

2
 

EI
2

2

dx

vd
=-258+52x-4x

2
+50<x-5>

0
+4<x-5>

2
 

 

EI
dx

dv
=-258x+26x

2
-

3

4
x

3
+50<x-5>

1
+

3

4
<x-5>

3
+C1………….….(1) 

EIv=-129x
2
+

3

26
x

3
-

3

1
x

4
+25<x-5>

2
+

3

1
<x-5>

4
+C1x+C2………….(2) 

B.C 

dx

dv
=0   at x=0   in eq.(1) 

v=0     at x=0     in eq.(2) 

C1=0 

C2=0 

v=
EI

1
(-129x

2
+

3

26
x

3
-

3

1
x

4
+25<x-5>

2
+

3

1
<x-5>

4
) 

 

 

Moment Area Method 
               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              
B

A

AB dx
EI

M
/  

     The notation AB /  is referred to as the angle of the tangent at B measured with respect to 

the tangent at A. 
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Theorem 1 The angle between the tangents at any two points on the elastic curve equals 

the area under the M/EI diagram between these two points. 

        If the area under M/EI diagram is positive, the angle is measured counterclockwise 

from the tangent A to tangent B. 

        If the area under M/EI diagram is negative, the angle AB /  is measured clockwise from 

tangent A to tangent B. AB /  will measured in radians. 

 

 

 

 

 

 

 

 

 

 

 

 

 

              
B

A

BA dx
EI

M
xt /

 

BAt / : the vertical deviation of the tangent at A with respect to the tangent at B. 

                dAxxdA  

 


B

A

dx
EI

M
 represents the area under the M/EI diagram, we can also write:- 

 



B

A

BA dx
EI

M
xt /  

 x  is the distance from A to the centroid of the area under the M/EI diagram between A 

and B.  
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Theorem 2  The vertical deviation of the tangent at a point A on the elastic curve with 

respect to the tangent extended from another point B equals the moment of the area under 

the M/EI diagram between these two points. This moment is computed about point A 

where the vertical deviation BAt /  is to be determined. 

 

  

 

 

 

 

 

 

 

 

Example: Determine the slope of the beam shown at points B and C. EI is constant 

  

 

 

 

 

 

 

 

 

B = AB /  

C = AC /  

 

 

 

 

MA-PL=0 

MA=PL 

 

 

Ay=P 

 

 

 

 

 


B

A

AB dx
EI

M
/  Area under the M/EI diagram from A to B 

AM

yA

P

0 AM

0 yF
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B = 


































 


222

1

22
/

L

EI

PL

EI

PLL

EI

PL
AB  

     =
EI

PL

8

3 2
 rad     clockwise 

 

C =
AC / =  

2

1
L

EI

PL







 
=

EI

PL

2

2
   rad     clockwise 

 

 

Example: Determine the displacement of points B and C of the beam shown. EI is 

constant. 

 

 

 

 

 

 

 

 

 

 

vB= ABt /  

vC= ACt /  

 

  0yF  

Ay=0 

 

  0AM  

M-Mo=0 

M=Mo 

 

 

vB= 
B

A

AB dx
EI

M
xt /

 

            = 














 









222

1 L

EI

ML o =
EI

LM o

8

2
 

 

vC= 
A

C

AC dx
EI

M
xt / =  L

EI

ML o







 









2
=

EI

LM o

2

2
 

 

 

 
 

oM oM
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Example: Determine the slope at point C for the steel beam shown. Take Est=200 GPa, 

I=17×10
6
 mm

4
 

 

 

 

 

 

 

 

 

 

 

C = ACA /   

Since the angle is very small A =tan A =
L

t AB /  

ABt / = 










































2

1
)2(

24
)2(

3

2

2

1
)6(

24
)6(

3

1
2

EIEI
 

 

ABt / =
EI

320
 

AC / =
EIEI

8

2

1
)2(

8

















 

C =
EI8

320
-

EI

8
=

EI

32
 

 

C =
69 101710200

32


=0.009411 rad 

 

 

Castigliano’s Theorem Applied to Beams   
               

               




L

EI

dx

P

M
M

0

)(  

  Where:- 

=displacement of the point caused by the real loads acting on the beam. 

P=external force of variable magnitude applied to the beam in the direction of  . 

M=internal moment in the beam, expressed as a function of x and caused by both the force 

P and the load on the beam. 

               




L

EI

dx

M

M
M

0

)(  

 =the slope of the tangent at a point on the elastic curve. 

 

 

 

C

L
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M =an external couple moment acting at the point. 

 

Example: Determine the displacement of point B on the beam shown below. EI is 

constant. 

 

 

 

 

 

 

 

  0M  

0)
2

(  Px
x

wxM  

Px
x

wM 
2

2

 

x
P

M





 

When P=0 

2

2x
wM   , x

P

M





 

  










L LL

B dxx
EI

w
dx

EI

x
wx

EI

dx

P

M
M

0 0

3

2

0
2

)(
2)(  

L

B x
EI

w

0

4

8
 =

EI

wL

8

4

 

Example: Determine the displacement of point A of the steel beam shown below.        

I=450 in
4
, Est=29×10

3
 ksi. 

 

 

 

 

 

 

 

 

  0BM  

Cy×20-60×10+15×
3

10
+P×10=0 

Cy =27.5-0.5P 

  0yF  

By+27.5-0.5P-60-15-P=0 

P

yB yC

xC
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By=47.5+1.5P 

  0xF  

Cx=0 

  0M  

M1+ )
3

(
20

3 12

1

x
x +Px1=0 

M1=-
20

3

1x
- Px1 

P

M



 1 =-x1 

When P=0 

M1=-
20

3

1x
 

P

M



 1 =-x1 

  0M  

M2+3x2(
2

2x
)+15×(

3

10
+x2)+P(10+x2)-( 47.5+1.5P)x2=0 

M2=
2

2
2

3
x +(32.5+0.5P)x2-10P-50 

P

M



 2 =0.5x2-10 

 

When P=0 

M2=
2

2
2

3
x +32.5x2-50    ,  

P

M



 2 =0.5x2-10 

  









LL

A
EI

dx

P

M
M

EI

dx

P

M
M

0

22
2

0

11
1 )()(  

 

 

20

0

222

2

2

310

0

11

3

1

3

)105.0)(505.32
2

3
(

)12(
)(

20

)12(
dxxxx

EI
dxx

x

EI
A  



















20

0

2

2

2

3

2

4

2

10

0

5

1

3

5001754166.10
16

3

100

)12(
xxxx

x

EI
A  

)2.66671000(
)12( 3


EI

A  

inA 75.0  

 

 

 

 

P
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1
20

3
x

1V
1M

1x

P kip15

2V 2M

23x

P5.15.47 
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Example: Determine the slope at point B of the A-36 steel beam shown below.I=70×10
6
 

mm
4
 and E=200 GPa. 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

  0AM  

By×10+ M -10×12.5=0 

By=12.5-
10

M
 

  0yF  

Ay+12.5-
10

M
-10=0 

Ay=
10

M
-2.5 

  0M  

M1-(
10

M
-2.5)x1=0 

M1= (
10

M
-2.5)x1 

1
1

10

1
x

M

M





 

When M =0 

M1= -2.5x1   ,    1
1

10

1
x

M

M





 

  0M  

M2+2x2(
2

2x
)-(12.5-

10

M
)x2-(

10

M
-2.5)(10+x2)+ M =0 

mKN /2

A B

C

m10 m5

KN10

yA yB

C

M

1V
1M

1x

5.2
10


M

22x

10
5.12

M


M

5.2
10


M

2x

2V 2M
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M2=(12.5-
10

M
)x2+(

10

M
-2.5)(10+x2)-

2

2x - M  

M

M



 2 = 1
10

1
x +1+ 1

10

1
x -1=0 

 

When M =0 

M2=- 2

2x +10x2-25   ,   
M

M



 2 =0 

 




L

B
EI

dx

M

M
M

0

)( =  







5

0

22
2

10

0

11
1 )()(

EI

dx

M

M
M

EI

dx

M

M
M  

    = 0

)
10

)(5.2(10

0

1
1

1





 EI

dx
x

x

 

   =  

10

0

1

2

16126
25.0

10200101070

1
dxx  

   =0.07142×10
-3

(-0.0833
10

0

3

1x ) 

  radB 00595.0  

      =-0.341
0
 

 

 

 

 

 

Statically Indeterminate Beams 

 

 

 

 

 

 
 

 

1. Method of Integration: 
  

Example: The beam is subjected to the distributed loading shown. Determine the reaction 

at A. EI is constant. 
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  0M  

0
6

3


L

xw
xAM o

y  

L

xw
xAM o

y
6

3

  

)(
2

2

dx

vd
EIM   

L

xw
xA o

y
6

3

 )(
2

2

dx

vd
EI  

)(
dx

dv
EI 1

42

242
C

L

xwxA
oy

  

EIv 21

53

1206
CxC

L

xwxA
oy

  

Boundary Conditions 

   at  x=0   v=0 , at x=L   0
dx

dv
  , at x=L   v=0 

0=0-0+0+C2                          C2=0       

0
242

1

32

 C
LwLA

oy
  …………………(1) 

0
1206

1

43

 LC
LwLA

oy
  ………………..(2) 

                  From equations (1) and (2) 

C1=
24

3Lwo  

10

Lw
A o

y   

 

Example: The beam shown below is fixed supported at both ends and is subjected to the 

uniform loading shown. Determine the reactions at the supports. Neglect the effect of axial 

load. 
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  0yF  

VA=VB=
2

wL
 

MA=MB= 

  0M  

0
22

2

 x
wLwx

MM  

Mx
wLwx

M 
22

2

 

)(
2

2

dx

vd
EIM   

)(
2

2

dx

vd
EI Mx

wLwx


22

2

 

)(
dx

dv
EI 1

2
3

46
CxMx

wLwx
  

EIv 21

23
4

21224
CxCx

M
x

wLwx



  

Boundary Conditions 

   at  x=0   v=0 , at x=0   0
dx

dv
  , at x=L   v=0 

0=-0+0-0+0+C2                   C2=0 

0=-0+0-0+C1                                       C1=0 

0= 2
44

21224
L

MwLwL 
  

12

2wL
M   
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Moment Area Method(Statically Indeterminate): 
    Since application of the moment area theorems requires calculation of both the area 

under the M/EI diagram and the centroidal location of this area, it is often convenient to 

use separate M/EI diagrams for each of the known loads and redundant rather than using 

the resultant diagram to compute these geometric quantities. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

116 

Example: The beam is subjected to the concentrated loading shown. Determine the 

reactions of the supports. EI is constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the elastic curve 0B , tB/A=0 

 

Using superposition method to draw the separate M/EI diagrams for the redundant reaction 

By and the load P.  

 

 

 

 

 

 

 

 

               For load P                                                                For redundant reaction By 

 

0)
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2
)()((
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1
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)()(()

3

2
)()((

2

1
 LL

EI

PLL
L

EI

PL
LL

EI

LBy
 

PBy 5.2  

  0yF  

-Ay-P+2.5P=0                   Ay=1.5P 

  0AM  

MA=0.5PL 

 

 

A

A

B

B
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Example: The beam is subjected to the couple moment at it end C as shown below. 

Determine the reaction at B. EI is constant. 

 

 

 

 

 

 

 

 

 

 

 

 

From the elastic curve  ABAC
ABAC tt

L

t

L

t
//

// 2
2

  

 

Using superposition method to draw the separate M/EI diagrams for the redundant reaction 

By and the load Mo.  
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Combined Stresses 

There are three types of loading: axial, torsional  and flexural. 

Axial loading  
A

P
a   

Torsional loading  
J

rT .
  

Flexural loading  
I

yM
f

.
  

    There are four possible combinations of these loadings: 

1. Axial and flexural. 

2. Axial and torsional. 

3. Torsional and flexural. 

4. Axial , torsional and flexural. 

 

 

 

 

 

I

yM
f

.
  

 

 

 

 

 

A

P
a   

 

 

 

 

 

 

 

For point A    faA       for point B   faA    
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Example:  The bent steel bar shown is 200 mm square. Determine the normal stresses at A 

and B. 

 

 

 

 

 

 

 

  0CM  

-500×200×10
-3

+R1×900×10
-3

=0 

R1=111.111 kN 

  0yF  

R2+111.111cos(53.1301)-500sin(53.1301)=0 

R2=333.333kN 

 

 

 

 

 

 

 

 

  0xF  

R3+111.111sin(53.1301)-500cos(53.1301)=0 

R3=388.888kN 

MPa
A

P
A 5.12

)10200200(

500
6







  

M=-500×200×10
-3

+111.111×700×10
-3

 

M=-22.2223 kN.m  

MPa
I

yM
f 666.16

12/)10200()10200(

101002223.22.
333

3











  

MPafaA 166.29666.165.12    

MPafaB 166.4666.165.12    
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Stresses at a Point 

 

 

 

 

 

 

 

 

 

General State of Stress                               Plane  Stress 

 

 

 

 

 

 

 

 

 

 

 




 2sin2cos)
2

()
2

( xy

yxyx

x 





 ……………………..(1) 




 2sin2cos)
2

()
2

( xy

yxyx

y 





 …………………….(2) 




 2cos2sin)
2

( xy

yx

yx 


                …………………….(3) 

 The planes defining maximum or minimum normal stresses are found from: 

yx

xy

p








2
2tan                 ………………(4) 

The planes of maximum shearing stresses are defined by : 

xy

yx

s





2
2tan


               ………………(5) 

The planes of zero shearing stresses may be determined by setting η equal to zero. 

yx

xy









2
2tan                ……………….(6) 

Equation 6 and 4 show that maximum and minimum normal stresses occur on planes of  

zero shearing stresses. 

The maximum and minimum normal stresses are called the principal stresses. 
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Equation 5 is the negative reciprocal of  equation 4. This means that the values of 2θs from 

equation 5 and equation 4 differ by 90
ο
. This means that the planes of maximum shearing 

stress are at 45
o
 with the planes of principal stress. 

22

.min
.max )

2
()

2
( xy

yxyx



 





 …………………(7) 

22

max )
2

( xy

yx



 


               …………………..(8) 

2

yx

avg





                                    ………………….(9) 

Example:The state of plane stress at a point is represented by the element shown. 

Determine the state of stress at the point on another element oriented 30
o
 clockwise from 

the position shown. 

 

 

 

 

θ=-30
o
 




 2sin2cos)
2

()
2

( xy

yxyx

x 





  

)60sin(25)60cos()
2

5080
()

2

5080
( 





x  

MPax 849.25  




 2sin2cos)
2

()
2

( xy

yxyx

y 





  

)60sin(25)60cos()
2

5080
()

2

5080
( 





y  

MPay 15.4  




 2cos2sin)
2

( xy

yx

yx 


  

)60cos(25)60sin()
2

5080
( 




yx  

MPa
yx 791.68  

 

 

 

 

 

 

 

 

MPa50

MPa80

MPa25

x

y

MPa791.68

MPa849.25

MPa15.4

MPax 80

MPay 50

MPaxy 25
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Example: When the torsional loading T is applied to the bar shown it produce a state of 

pure shear stress in the material. Determine a) the maximum in plane shear stress and the 

associated average normal stress. b) the principal stresses. 
0x  

0y  

MPaxy 60  

a) 22

max )
2

( xy

yx



 


  

MPa60)60()
2

00
( 22

max 


  

0
2

00

2








yx

avg


  

xy

yx

s





2
2tan


  

0
602

0
2tan 


s  

θs=0 

b) 22

.min
.max )

2
()

2
( xy

yxyx



 





  

MPa60)60()
2

00
()

2

00
( 22

.min
.max 





  

ζmax=60 MPa 

ζmin=-60 MPa 

yx

xy

p








2
2tan  





0

602
2tan p  

45
42

2 





 pp or 135
o
 




 2sin2cos)
2

()
2

( xy

yxyx

x 





  

MPax 60)90sin(60)90cos()
2

0
()

2

0
(   

 

 

 

 

 

MPa60

MPa60

MPa60
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Example: The state of plane stress at a point on a body is shown on the element. Represent 

this stress state in terms of the principal stresses. 

 

 

 

 

22

.min
.max )

2
()

2
( xy

yxyx



 





  

22

.min
.max )60()

2

9020
()

2

9020
( 





  

394.8135
.min
.max   

ζmax=116.394 MPa 

ζmin=-46.394 MPa 

yx

xy

p








2
2tan = 090909.1

9020

602





 

744.23489.472  pp  or 66.256
o
 




 2sin2cos)
2

()
2

( xy

yxyx

x 





  

MPax 349.46)489.47sin(60)489.47cos()
2

9020
()

2

9020
( 





  

 θp1=66.256
o
 

θp2=-23.744
o
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MPax 20

MPay 90

MPaxy 60
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Example: A sign of dimensions 2 m×1.2 m is supported by a hollow circular pole having 

outer diameter 220 mm and inner diameter 180 mm as shown below. The sign is offset 0.5 

m from the center line of the pole and its lower edge is 6 m above the ground. Determine 

the principal stresses and maximum shear stresses at points A and B at the base of the pole 

due to wind pressure of 20 kPa against the sign. 

w=PA=2×(2×1.2)=4.8 kN 

T=wr=4.8×(1+0.5)=7.2 kN.m 

M=wd=4.8×(6+0.6)=31.68 kN.m 

V=w=4.8 kN 

])10180()10220[(
64

][
64

43434

1

4

2

 

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









  

η2=0.76 MPa 

 

 

 

Point A 

ζ1=55.7 MPa 

ζ2=-0.7 MPa 

ηmax=28.2 MPa 

Point B 

ζ1=7 MPa 

ζ2=-7 MPa 

ηmax=7 MPa 

MPa91.54

MPa24.6 MPa7
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Mohr's Circle 

   For plane stresses transformation have a graphical solution that is often convenient to use 

and easy to remember. Furthermore this approach will allow us to visualize how the 

normal and shear stress components x and yx  vary as the plane on which they act is 

oriented in different directions. This graphical solution known as Mohr's circle. 




 2sin2cos)
2

()
2

( xy

yxyx

x 





  




 2cos2sin)
2

( xy

yx

yx 


  

The parameter θ can be eliminated by squaring each equation and adding the equations 

together. The result is: 

2222 )
2

()]
2

([ xy

yx

yx

yx

x 





 





  

Let 
2

yx
c

 
 ,  R

2
= 22)

2
( xy

yx






  

222][ Rc yxx   this equation represents a circle having a radius R and center at point 

(c,0). 

 
Construction of the circle 

1. Establish a coordinate system such that the abscissa represents the normal stress ζ 

with positive to the right and the ordinate represents the shear stress η with positive 

down ward. 

2. Using the positive sign convention for ζxζyηxy as shown: 
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Plot the center of the circle C which is located on the ζ axis at a distance 
2

yx

avg





  

from the origin. 

3. Plot the reference point A having coordinate A(
x , xy ). This point represents the 

normal and shear stress components on the element's right hand vertical face, and 

since the x axis coincides with the x axis, this represents θ=0. 

4. Connect point A with the center C of the circle and determine CA by trigonometry. 

This distance represents the radius R of the circle. 

5. Once R has been determined , sketch the circle. 

 
Principal Stresses 

The principal stresses ζ1 and ζ2 (ζ1≥ζ2) are represented by the two points B and D where 

the circle intersects the ζ axis i.e where η=0. 

These stresses act on planes defined by angles θp1 and θp2. They are represented on the 

circle by angles 2θp1 and 2θp2and are measured from the radial reference line CA to line CB 

and CD respectively. 

Using trigonometry only one of these angles needs to be calculated from the circle since θp1 

and θp2 are 90
o
 apart. 
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Maximum in Plane Shear Stress. 

The average normal stress and maximum in plane shear stress components are determined 

from the circle as the coordinates of either point E or F. In this case the angles θs1 and θs2 

give the orientation of the planes that contain these components. The angle 2θs1 can be 

determined using trigonometry. 

 

 

 

 

 

 

 

Stress on Arbitrary Plane. 

The normal and shear stress components x  and yx acting on a specified plane defined by 

the angle θ can be obtained from the circle using trigonometry to determine the coordinates 

of point P. 

To locate P, the known angle θ for the plane must be measured on the circle in the same 

direction 2θ from the radial reference line CA to the radial line CP. 

Example: Due to the applied loading the element at point A on the solid cylinder is 

subjected to the state of stress shown. Determine the principal stresses acting at this point. 

x -12 ksi 

y 1 

xy -6 ksi 

6
2

012

2








yx
c


ksi 

22)
2

( xy

yx
R 





  

22 )6()
2

012
( 


R =8.485 ksi 

Rc 1  

1 -6+8.485=2.485 ksi 

Rc 2  

2 -6-8.485=-14.485 ksi 




  )
612

6
(tan2 1

2p  )1(tan 1 45
o
 

2p 22.5
o
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Example: An element in plane stress at the surface of a large machine is subjected to 

stresses shown below. Using Mohr's circle determine the following quantities a) the stress 

acting on element inclined at an angle 40
o
 b)the principal stresses and c) the maximum 

shear stress. 

x 15ksi 

y 5 ksi 

xy 4ksi 
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2

515

2








yx
c


ksi 

22)
2

( xy

yx
R 







 
 

22 )4()
2

515
( 


R =6.403 ksi 

 

A(15,4) 

 

 

  )
403.6

4
(sin2 1

1p 38.66
o
 

33.191 p  

Rc 1  

1 10+6.403=16.403 ksi 

Rc 2  

2 10-8.485=3.597ksi 

 

 
ksix 807.14)34.41cos(403.610   

 

 

 
ksiy 807.4)34.41cos(403.610   

ksi
yx 23.4)34.41sin(403.6 

 
 

 

 

 

ksi5

ksi15

ksi4

33.191 p

33.1092 p

ksi403.16

ksi597.3

66.382 1 p

D B

A

C

ksi15

ksi4
ksi10

ksiR 403.6

P

F

34.41

P

ksi807.14

40

ksi807.4

ksi23.4
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ksiR 403.6max   

ksicavg 10  

12 s 38.66+90=128.66
o
 

1s 64.33
o
   counterclockwise 

 

 

 

 

Stresses Due to Axial Load and Torsion 

A

P
  

J

cT
  

 

 

 

 

 

 

21, from Mohr’s circle or from stress transformation equations. 

Example: An axial force of 900 N and a torque of 2.5 N.m are applied to the shaft as 

shown. If the shaft has a diameter of 40 mm, determine the principal stresses at appoint P 

on its surface. 

 

 

 

 

 

 

 

 

 

J

rT
 =
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3

)1020(
2

)1020(5.2










=198.94367 kPa 

A

P
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23 )1020(

900


=716.19724  kPa 

 

 

 

 

0x  , y 716.19724  kPa  ,  198.94367 kPa 

ksi403.6max 

ksiavg 10

33.641 s





P
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kPac
yx

09862.358
2

716.19724

2




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kPaR xy
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65.409)94367.198()
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19724.7160
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( 2222 





 


 

 
Rc 1 = 09862.358 + 65.409 =767.74862  kPa 

Rc 2 = 09862.358 - 65.409 =-51.55138  kPa 

054.29)
65.409

94367.198
(sin2 1

2  

p
 

527.142 p clockwise 

 

 

 

 

 

 

 

Example: The beam shown below is subjected to the distributed loading of w=120 kN/m. 

Determine the principal stresses in the beam at point P, which  lies  at the top of the web. 

Neglect the size of the fillets and stress concentrations at this point. I=67.4×10
-6

 m
4
. 

 
Ax=0 

∑MB=0 

Ay×2-240×1=0                    Ay=120 kN 

By=120 kN 

-V-36+120=0 

V=84 kN 



 

 

131 

M-120×0.3+36×0.15=0 

M=30.6 kN.m 

MPa
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My
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104.67
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Rc 1 = 7.22 + 857.41 =19.157  MPa 

Rc 2 = 7.22 - 857.41 =-64.557  MPa 

16.57)
857.41

168.35
(sin2 1

2  
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58.282 p counterclockwise 

 

 

 

 

Strain at a Point 
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Plane Strain 
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Example:A differential element of material at a point is subjected to a state of plane strain 

x =500×10
-6

 , y =-300×10
-6

, xy =200×10
-6

, which tends to distort the element as shown 

below. Determine the equivalent strains acting on an element oriented at the point 

clockwise 30
o
 from the original position. 
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)60sin(
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
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




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yx
 

yx 793
610  

Mohr's Circle – Plane Strain 

C=
2
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R= 22 )
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(
xyyx 




 

Point A ( x ,
2

xy
) 

 

 

 

 

 

 The principal strain 1 and 2 are determined from the circle as the coordinates of 

points B and D. 

 The average normal strain and the maximum in plane shear strain are determined 

from the circle as the coordinates of points E and F. 
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 The normal and shear strain components 
x  and yx for a plane specified at angle 

can be obtained from the circle using trigonometry to determine the coordinates of 

point P. 

Example:The state of plane strain at a point is represented on an element having 

components x =-300×10
-6

 , y =-100×10
-6

, xy =100×10
-6

. Determine  the state of strain on 

an element oriented  20
o
 clockwise from this reported position. 
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10200
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1010010300
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6108.111   

Point A(-300×10
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,50×10
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44.1356.2640   

)cos(  RCx   

))44.13cos(108.11110200( 66  x  

)10309( 6x  




sin
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R
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)44.13sin(108.111
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6
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61052 yx  

)cos(  RCy   

))44.13cos(108.11110200( 66  y  
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Theories of Failure:- 
         

1. Ductile Materials 
a) Maximum Shear Stress Theory 

                      
Y

Y









2

1
           21,   have same signs. (Rankine) 

 

                      Y  21                  21,   have opposite signs.(Guest-Tresca) 

 

 

b) Maximum Principal Strain Theory 

                   Y  321     (Saint-Venant)             

         

c) Maximum Shear Strain Energy Per Unit Volume (Distortion Energy 

Theory) 

   For the case of triaxial stress 

    22

13

2

32

2

21 )()()(
2

1
Y      (Maxwell-Huber-Von Mises) 

                       For the case of plane or biaxial stress 

                       22

221

2

1 Y   

d) Total  Strain Energy Per Unit Volume  

                   2

133221

2

3

2

2

2

1 )(2 Y       (Haigh) 

 

2. Brittle  Materials 
a)  Maximum Normal Stress Theory 

If the material is subjected to plane stress. 

ult
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







2
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Example:- The steel pipe shown below has an inner diameter of 60 mm and an outer 

diameter of 80 mm.   If it is subjected to a torsional moment of 8 KN.m and a bending 

moment of 3.5 KN.m,  determine if these loadings cause failure as defined by the 

maximum distortion energy theory. The yield stress for the steel found from a tension test 

is σY=250 MPa.  
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221

2

1 Y   

 

 Point A 
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
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
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

I
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A  MPa 

 

 

        ζx=-101.859  MPa  , ζy=0  , xy=116.41  MPa 

 

        c=
2

yx  
= 9295.50

2

0859.101



 MPa 

        R= 2222 )41.116()
2

0859.101
()

2
( 





xy

yx



=127.063 MPa 

       A(-101.859,116.41)         Draw Mohr’s circle  

 

RC 1 =-50.9295+127.063=76.1335   MPa 

RC 2 =-50.9295-127.063 

    =-177.9925  MPa 
22

221

2

1 Y   

 

(76.1335)
2
-(76.1335)( -177.9925)+( -177.9925)

2
 ≤(250)

2
 

51100≤62500 since 51100<62500 so these loadings will not cause failure. 
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Example:- The solid shaft shown below has a radius of 0.5 in. and is made of steel having 

yield stress Y 36 ksi. Determine if the loadings cause the shaft to fail according to the 

maximum shear stress theory and the maximum distortion energy theory. 

 

  

ksi
A

P
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)5.0(
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2

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1.19x  ksi , 0y , 55.16  ksi 

 

2,1
2

yx  
± 22)
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( xy
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





 

       =
2
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± 22 )55.16()

2

01.19
( 
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     =-9.55±19.11 

 
ksi56.91   

ksi66.282   

 

 Maximum shear stress theory 

 

Y  21  

3666.2856.9   

38.2>36 

So the failure will occur according to this theory. 

 maximum distortion energy theory 
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221

2

1 Y   

(9.56)
2
-(9.56)(-28.66)+(-28.66)

2
=(36)

2
 

1186.515<1296 

 

the failure will not occur according to this theory. 
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Example:- The solid cast iron shaft shown below is subjected to a torque of T=400 lb.ft. 

Determine the smallest radius so that it does not fail according to the maximum normal 

stress theory ult =20 ksi. 
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=20000 

r=0.535 in. 
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Columns 

   Columns are long slender members subjected to an axial compressive force. The force 

may be large enough to cause the member to deflect laterally or sides way, this deflection 

is called buckling. 

Critical Load 

  The maximum axial load that a column support when it is on the verge of buckling is 

called the critical load (Pcr). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any additional loading will cause the column to buckle and therefore deflect laterally.  

 

 

 

 

 

 

 

 

 

 

 

 

Ideal Column with Pin Supports 

The column to beconsideredis an ideal column, meaning one that is perfectly straight 

before loading, is made of homogeneous material, and upon which the load is 

appliedthrough the centroid of the cross section. It is further assumed that the material 

behaves in a linear-elastic manner and that the column buckles or bends in a single 

plane. 
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In order to determine the critical load and the buckled shape of the column we will apply 

the following equation: 

 

M
dx

vd
EI 

2

2

 

  0sec tionM  

M+Pv=0 

M=-Pv 

Pv
dx

vd
EI 

2

2

 

)1...(....................0)(
2

2

 v
EI

P

dx

vd
 

The general solution of equation (1) is: 

)2..(....................)cos()sin( 21 x
EI

P
Cx

EI

P
Cv   

C1 and C2 are determined from the boundary conditions : 

v=0   at  x=0                       C2=0 

v=0   at  x=L                       0)sin(1 L
EI

P
C  

C1≠0  therefore 

0)sin( L
EI

P
 

nL
EI

P
  

....,.........3,2,1
2

22

 n
L

EIn
P


 

The smallest value of P is obtained when n=1, so the critical load for the column is: 
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2

2

L

EI
Pcr


  

This load is sometimes referred to as the Euler load, n represents the number of waves in 

the deflected shape of the column; if n=2 two waves will appear in the buckled shape and  

the column will support a critical load that is 4Pcr. 

 
The corresponding buckled shape is: 

)sin(1
L

x
Cv


  

The constant C1 represent the maximum deflection vmax which occurs at the midpoint of the 

column. 

It is important to realize that the column will buckle about the principal axis of cross 

section having the least moment of inertia(the weakest axis). For example a column having 

a rectangular cross section as shown below will buckle about the a-a axis not the b-b axis. 

 
As a result engineers usually try to achieve a balance keeping the moments of inertia the 

same in all directions  

yx II   

2

2

L

EI
Pcr


  
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Pcr: critical or maximum axial load on the column just before it begins to buckle. This load 

must not cause the stress in the column to exceed the proportional limit. 

E: modulus of elasticity for the material. 

I: least moment of inertia for the column's cross sectional area. 

L: unsupported length of the column, whose ends are pinned. 

I=Ar
2
 

2

2

)(
r

L

E
cr


   

cr :critical stress which is an average stress in the column just before the column buckles. 

This stress is an elastic stress and therefore:  

Ycr    

r: smallest radius of gyration of the column 
A

I
r  . 

L/r: slenderness ratio, it’s a measure of the column flexibility.  

Example: A 24 ft long A-36 steel tube having the cross section shown below is to be used 

as a pin ended column. Determine the maximum allowable axial load the column can 

support so that it does not buckle. Est=29×10
3
ksi, Y =36 ksi. 

 

2

4432
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)1224(
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=64.52 kip. 

)75.23(

52.64
22 





A

Pcr
cr  

          =14.28  ksi 

Since  Ycr    

Pallow=64.52 kip. 

 

 

 

 

Example: The A-36 steel W8×31 member shown below is to be used as a pin connected 

column. Determine the largest axial load it can support before it either begins to buckle or 

the steel yields. Est=29×10
3
ksi, Y =36 ksi. A=9.13 in

2
, Ix=110 in

4
, Iy=37.1 in

4
. 

Buckling occurs about y-axis. 
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      =512  kip 
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13.9

512
  

 Ycr  
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13.9
36

P

A

P
y   

P=328.68  kip. 

Columns Having Various Types of Supports 

 Fixed-Free column 

  0sec tionM  

M-P( -v)=0 

M=P( -v) 
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dx
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...(1).................... 
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The solution of equation (1) consists of both a complementary and particular solution. 
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P
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C1 and C2 are determined from the boundary conditions : 

v=0   at  x=0                     C2=-  
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Since the deflection at the top of the column is  , that is at x=L  v=  

0)cos( L
EI

P
  

 ≠0 

0)cos( L
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The smallest value of  P is obtained when n=1, so the critical load for the column is: 
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Effective Length 

The effective length (Le) is the distance between points of inflection (that is , points of zero 

moment ) in its deflection curve, assuming that the curve is extended (if necessary) until 

points of inflection are reached. 

 

 

 

 

 

 

Le=KL 

Pinned –Ends          K=1 

Fixed-Free Ends      K=2 

Fixed-Ends             K=0.5 

Pinned-Fixed Ends  K=0.7 

Euler's formula becomes: 

2

2

)(KL

EI
Pcr


 ;

2
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r

KL

E
cr


   

KL/r: columns effective slenderness ratio. 

For fixed-Free ends K=2 

2

2

4L

EI
Pcr


  

Example: A W6×15 steel  column is 24 ft long and is fixed at is ends as shown below. Its 

load carrying capacity is increased by bracing it about the y-y (weak) axis using strut that 

are assumed to be pin connected to its midheight. Determine the load it can support so that 

the column does not buckle nor the material exceed the yield stress. Take Est=29×10
3
ksi 

and Y =60 ksi. A=4.43 in
2
, Ix=29.1 in

4
, Iy=9.32 in

4
. 
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Pcr=262.5  kip. 
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Example: A viewing platform in a wild animal park is supported by a raw of aluminum 

pipe columns having length 3.25 m and outer diameter 100 mm. The bases of the columns 

are set in concrete footings and the tops of the columns are supported laterally by the 

platform (pinned).  The columns are being designed to support compressive loads 100 kN. 

Determine the minimum required thickness t of the columns if a factor of safety n=3 is 

required with respect to Euler buckling for aluminum use 72 GPa for the modulus of 

elasticity and use 480 MPa for the proportional limit. 

 
 

For fixed –pinned ends column  
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t=6.846 mm 


