

University of Thi-Qar College of Engineering Civil Engineering Department

Compression Members

AISC Manual: Compression Members

Compression Members:

- Chapter E: Compression Strength
- Chapter I: Composite Member Strength
- Part 4: Design Charts and Tables
- Chapter C: Analysis Issues

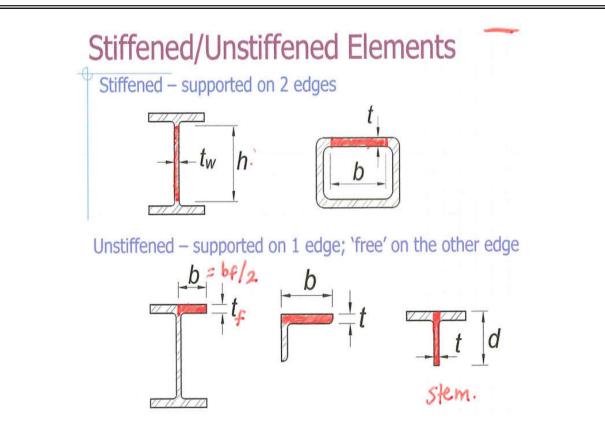
University of Thi-Qar College of Engineering Civil Engineering Department

The following slides assume: Non-slender flange and web sections (no local buckling) Doubly symmetric members Buckling strength depends on the slenderness of the section, defined as L_c/r_c L_c is the effective length of the member. The nominal strength is defined as Equation E3-1 $P_n = F_{cr} A_a$ Flexural Buckling If $\frac{L_c}{r} \leq 4.71 \sqrt{\frac{E}{F_y}}$, then $F_{cr} = F_y 0.658^{\frac{F_y}{F_e}}$. Equation E3-2 This defines the "inelastic" buckling limit. If $\frac{L_c}{r} \leq 4.71 \sqrt{\frac{E}{F_y}}$, then, $F_{cr} = 0.877 F_e$. Equation E3-3 This defines the "elastic" buckling limit with a reduction factor, 0.877, times the theoretical limit. F_e = elastic (Euler) buckling stress, $F_e = \frac{\pi^2 E}{\left(\frac{L_c}{2}\right)^2}$ Equation E3-4

University of Thi-Qar College of Engineering Civil Engineering Department

Classification of sections for sections for buckling

Sections are classified as *compact*, *noncompact*, or *slender-element sections*. For a section to qualify as compact its flanges must be continuously connected to the web or webs and the width-thickness ratios of its compression elements must not exceed the limiting width-thickness ratios λ_p from Table B4.1. If the widththickness ratio of one or more compression elements exceeds λ_p , but does not exceed λ_r from Table B4.1, the section is noncompact. If the width-thickness ratio of any element exceeds λ_r , the section is referred to as a *slender-element section*.


Stiffened and unstiffened elements

- An unstiffened element is a projecting piece with one free edge parallel to the direction of the compression force.
- Stiffened element is supported along the two edges in that direction.
- Depending on the range of different widththickness ratio limits for the elements are stiffened or unstiffened, the elements will buckle at different stress situations.
- The AISC specification divides members into three classifications: compact, noncompact, and slender sections.

Table 5.2, p/158

University of Thi-Qar College of Engineering Civil Engineering Department

Example

- a) Using the column critical stress value in Table 4-22 of the manual, determine the LRFD design strength ØPn and the ASD allowable strength Pn/Ωc for the column shown in the figure, if a 50ksi steel is used.
- b) Repeat the problem, using Table 4-1 of the Manual.

٢

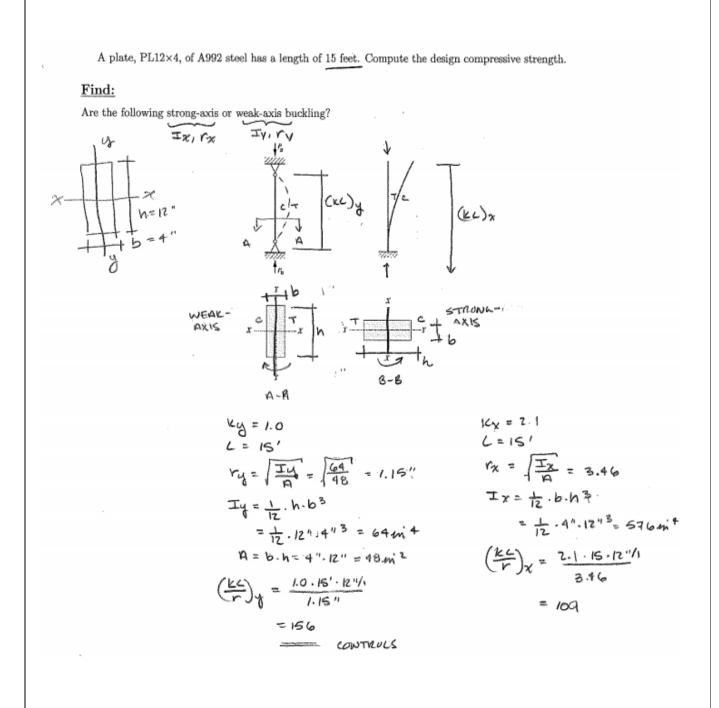
University of Thi-Qar College of Engineering Civil Engineering Department

					vaila Con	ble	С		al S	Str	ess		I		
		<i>F_y</i> = 35k	si		<i>F_y</i> = 36k	si		<i>F_y</i> = 42k	si		F _y = 46k	si		<i>F_y</i> = 50k	si .
	~	F_{cr}/Ω_{c}	$\phi_{c}F_{cr}$	~	F_{cr}/Ω_{c}	$e_c \phi_c F_{cr}$		F_{cr}/Ω_{c}	$\phi_{c}F_{cr}$	~	F_{cr}/Ω_{c}	$\phi_{c}F_{cr}$		F_{cr}/Ω_{c}	$\phi_c F_{cr}$
	$\frac{KI}{r}$	ksi	ksi	$\frac{KI}{r}$	ksi	ksi	$\frac{KI}{r}$	ksi	ksi	$\frac{KI}{r}$	ksi	ksi	$\frac{KI}{r}$	ksi	ksi
		ASD	LRFD		ASD	LRFD		ASD	LRFD	Ľ.	ASD	LRFD	ľ.	ASD	LRFD
	41	19.2	28.9	41	19.7	29.7	41	22.7	34.1	41	24.6	37.0	41	26.5	39.8
	42	19.2	28.8	42	19.6	29.5	42	22.6	33.9	42	24.5	36.8	42	26.3	39.5
	43	19.1	28.7	43	19.6	29.4	43	22.5	33.7	43	24.3	36.6	43	26.2	39.3
	44	19.0	28.5	44	19.5	29.3	44	22.3	33.6	44	24.2	36.3	44	26.0	39.1
	45	18.9	28.4	45	19.4	29.1	45	22.2	33.4	45	24.0	36.1	45	25.8	38.8
4	46	18.8	28.3	46	19.3	29.0	46	22.1	33.2	46	23.9	35.9	46	25.6	38.5
	47	18.7	28.1	47	19.2	28.9	47	22.0	33.0	47	23.8	35.7	47	25.5	38.3
ų	48	18.6	28.0	48	19.1	28.7	48	21.8	32.8	48	23.6	35.4	48	25.3	38.0
	49	18.5	27.9	49	19.0	28.5	49	21.7	32.6	49	23.4	35.2	49	25.1	37.7
	50	18.4	27.7	50	18.9	28.4	50	21.6	32.4	50	23.3	35.0	50	24.9	37.5
	51	18.3	27.6	51	18.8	28.3	51	21.4	32.2	51	23.1	34.8	51	24.8	37.2
	52	18.3	27.4	52	18.7	28.1	52	21.3	32.0	52	23.0	34.5	52	24.6	36.9
	53	18.2	27.3	53	18.6	28.0	53	21.2	31.8	53	22.8	34.3	53	24.4	36.7
	54	18.1	27.1	54	18.5	27.8	54	21.0	31.6	54	22.6	34.0	54	24.2	36.4
	55	18.0	27.0	55	18.4	27.6	55	20.9	31.4	55	22.5	33.8	55	24.0	36.1
	56	17.9	26.8	56	18.3	27.5	56	20.7	31.2	56	22.3	33.5	56	23.8	35.8
	57	17.7	26.7	57	18.2	27.3	57	20.6	31.0	57	22.1	33.3	57	23.6	35.5

University of Thi-Qar College of Engineering Civil Engineering Department

Shape A d Thickness, t- to t- 2 W(d), br Tuckness, t- to t- 2 N t- to N A A A T ability (and based) W14x132 38.8 14.7 14%0 0.453 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}$	d X-	-х У	r						ape sion							
Shape A d Thickness, t- br t- br Width, br Tuckness, t- br t- br A A A A A A A A A A T abbin Gag in.						Web			Fla	nge			0	listanc	æ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Shape					,	t.		,		,		_	<i>k</i> 1	T	Work able
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- 2					-			-	_			in .	in	Gage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	111.100			_					_							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															ľ ľ	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															Ý	Ý
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											7/4	1.15	111/1	11/14	107/-	616
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															1078	372
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															🕇	Ý
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														-		-1.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-					-	10%	51/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-					-	🖌	. ↓
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	×43°	12.6	13.7	13%	0.305	9/16	9/16	8.00	8	0.530	72	1.12	178	1	· '	'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	W14×38 ^c	11.2	14.1	141/8											115/8	31/2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×34°			14	0.285											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×30 [±]	8.85	13.8	137/8	0.270	1/4	3/8	6.73	63/4	0.385	3/8	0.785	178	3/4	•	3%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W14×26 ^c	7.69	13.9	137/8	0.255	1/4	¥8	5.03	5	0.420	7/16	0.820	11/8	3/4	115/8	23/4
				131/4	0.230	1/4	1/8	5.00	5	0.335	5/16	0.735	11/16	3/4	115/8	23/4
	Magazone)	00.0	16.0	167%	1 79	13/4	7/.	13.4	123/4	2 96	215/14	3.55	37/6	111/16	91/8	51/2
															1 î	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											21/4	2.85	31/8	1 1/2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							11/16	12.9	127/8	2.07	21/16	2.67	215/16	11/2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		61.8	14.7	143/4	1.18	13/16	5/8	12.8	123/4	1.90	17/8	2.50				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×190	55.8	14.4	143/1	1.06											11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						7/8								1000	1.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1.1.1					
×96 24.2 127 1294 0.550 ψ ₁₆ ψ ₁₆ 12.2 121% 0.900 ψ ₁₆ 1.50 1 ¹³ / ₁₆ 11/ ₈ ×87 25.6 12.5 127/ ₁₀ 0.515 ½ ½ 1.21 121/ ₉ 0.810 ¹³ / ₉₆ 1.31 11/ ₉₆ 1.41 1.41 <td< td=""><td></td><td></td><td>8 · · · · ·</td><td>1.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			8 · · · · ·	1.00												
x87 25.6 12.5 12 ¹ / ₂ 1 ₂ 0.515 ¹ / ₂ ¹ / ₄ 12.1 12 ¹ / ₈ 0.810 ¹¹ / ₉ / ₈ 1.41 1 ¹ / ₉ / ₈ 1.47 1 ¹ / ₉ / ₈ 1.79 23.2 12.4 12 ¹ / ₉ / ₈ 0.470 ¹ / ₂ ¹ / ₈ 12.1 12 ¹ / ₈ 0.735 ³ / ₄ 1.33 1 ¹ / ₉ 1 ¹ / ₉ / ₈ 1 ¹ / ₉ 1 ¹ / ₉ x72 21.1 12.3 12 ¹ / ₉ 0.470 ¹ / ₉ ¹ / ₉ 4 12.0 12 0.620 ¹¹ / ₉ 1.27 1 ¹ / ₉ / ₈ 1 ¹ / ₉ 1 ¹ / ₉																
x79 23.2 12.4 12% 0.470 ½ ¼ 12.1 12% 0.735 ¾ 1.33 1% 1% x72 (21.) 12.3 12% 0.433 % ¼ 120 12 0.673 1½ 1.27 1% 11%																
×72 21. 12.3 12 0.430 7/16 1/ 120 12 0.670 1/ 1.27 19/16 1/18					1.414.04											
														1.1.1.1		
x65' 19.1 12.1 121/ 0.390 3/a 3/a 12.0 12 0.605 3/a 1.20 11/2 1	×651	19.1	12.1						12	0.605	5/8	1.20	11/2	1	Y	Y

					Та		1-1 (' Sh			ed)				
						F	rope	ertie	S				W14	- W12
Nom- inal	Sec	pact tion		Axis	x-x			Axis Y-Y			r _{ts}	he	Prop	ional erties
WL Ib/ft	by 24		/ in.4	S in.3	r in.	Z in.3	/ in.4	S in.3	r in.	Z in.3	in.	in,	J in.4	C _w
132		17.7	1530	209	6.28		548	74.5	an. 3.76	113		in. 13.6	12.3	25500
120		19.3	1380	190	6.24		495	67.5	3.74	102		13.5	9.37	22700
109	8.49	21.7	1240	173	6.22		447	61.2	3.73	92.7		13.5	7.12	20200
99	9.34	23.5	1110	157	6.17	173	402	55.2	3.71	83.6		13.4	5.37	1800
90	10.2	25.9	999	143	6.14	157	362	49.9	3.70	75.6		13.3	4.06	1600
82	5.02	22.4	881	123	6.05	139	148	29.3	2.48	44.8		13.5		
02 74		25.4	795	123	6.04		148	29.3	2.48	44.8		13.5	5.07 3.87	6710 5990
68		27.5	722	103	6.04		134	26.6	2.48	36.9		13.4	3.87	538
61		30.4	640	92.1	5.98		107	24.2	2.40	30.9	2.80		2.19	538
53		30.9	541	77.8	5.89		57.7	14.3	1.92	22.0	2.22		1.94	254
48		33.6	484	70.2	5.85	78.4	51.4	12.8	1.91	19.6	2.20		1.45	224
43	7.54	37.4	428	62.6	5.82	69.6	45.2	11.3	1.89	17.3	2.18	13.1	1.05	1950
38	6.57	39.6	385	54.6	5.87	61.5	26.7	7.88	1.55	12.1	1.82	13.6	0.798	1230
34		43.1	340	48.6	5.83	54.6	23.3	6.91	1.53	10.6	1.80	13.5	0.569	1070
30	8.74	45.4	291	42.0	5.73	47.3	19.6	5.82	1.49	8.99	1.77	13.5	0.380	887
26	5.98	48.1	245	35.3	5.65	40.2	8.91	3.55	1.08	5.54	1.31	125	0.358	405
22		53.3	199	29.0	5.54	33.2	7.00		1.04	4.39	1.27		0.208	314
336 305	2.26 2.45	5.47 5.98	4060 3550	483 435	6.41	603	1190	177	3.47	274	4.13		243	57000
279	2.45		3550	393	6.29 6.16		1050 937	159	3.42	244 220	4.05		185	48600
252	2.89		2720	353	6.06		937 828	143 127	3.38 3.34	196	4.00 3.93		143 108	42000
230	3.11	7.56	2420	321	5.97		742	115	3.34	196	3.93		83.8	35800 31200
210	3.37		2140	292	5.89		664	104	3.31	159	3.87		64.7	27200
190	3.65		1890	263	5.82		589	93.0	3.25	143	3.76		48.8	23600
170	4.03		1650	235	5.74		517	82.3	3.22	126	3.71		35.6	20100
152	4.46		1430	209	5.66		454	72.8	3.19	111	3.66		25.8	17200
136	4.96		1240	186	5.58	214	398	64.2	3.16	98.0	3.61		18.5	14700
120	5.57	13.7	1070	163	5.51	186	345	56.0	3.13	85.4	3.56	12.0	12.9	12400
106	6.17		933	145	5.47	164	301	49.3	3.11	75.1	3.52	11.9	9.13	10700
96	6.76		833	131	5.44	147	270	44.4	3.09	67.5	3.49		6.85	9410
87	7,48		740	118	5.38		241	39.7	3.07	60.4	3.46		5.10	8270
79	8.22		662	107	5.34	119	216	35.8		54.3	3.43		3.84	7330
72	8.99		597	97.4			195	32.4			3.40		2.93	6540
65	9.92	24.9	533	87.9	5.28	96.8	174	29.1	3.02	44.1	3.38	11.5	2.18	5780


University of Thi-Qar College of Engineering Civil Engineering Department

<i>F_y</i> =	50 ksi	Δ	Ava		ole S mpr	Strei	ngth		5	W12	•
	аре						2 ×		_		
w	vit	9	-		7		9		2		5
De	sign	P_{n}/Ω_{c}	\$_P_n	P_{n}/Ω_{c}	\$ <i>cPn</i>	P_n/Ω_c	\$ _c P _a	P_{n}/Ω_{c}	\$c\$	P_g/Ω_c	\$\$\$e^P_\$\$
	•	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
gyration r _y	0 6 7 8 9 10	844 811 800 787 772 756	1270 1220 1200 1180 1160 1140	766 735 725 713 699 685	1150 1110 1090 1070 1050 1030	694 667 657 646 634 620	1040 1000 987 971 952 932	633 607 598 588 577 565	951 913 899 884 867 849	571 548 540 531 520 509	859 824 811 798 782 765
with respect to least radius of gyration	11 12 13 14 15	739 720 701 680 659	1110 1080 1050 1020 990	869 652 634 615 595	1010 980 953 924 895	606 590 573 556 538	910 887 862 835 809	551 537 522 506 490	828 807 784 761 736	497 484 470 456 441	747 727 706 685 662
with respect to	16 17 18 19 20 22 24 26 28 30	637 614 591 567 543	957 923 888 852 816	575 554 533 511 490	864 833 801 769 736	520 501 481 461 442	781 752 723 694 664	473 455 437 419 401	710 684 657 630 603	425 409 393 377 360	639 615 591 566 541
iength KI (ft)		495 447 401 356 312	744 672 602 534 469	446 402 360 319 279	670 605 541 479 420	402 362 323 286 250	603 544 486 430 376	365 328 293 259 226	548 493 440 389 340	327 294 262 231 202	491 442 393 347 303
Effective	32 34 36 38 40	274 243 217 195 176	412 365 326 292 264	246 218 194 174 157	369 327 292 262 236	220 195 174 156 141	331 293 261 234 212	199 176 157 141 127	299 265 236 212 191	177 157 140 126 114	267 236 211 189 171
					Prope	rties					
Pro (kips)	P _{wb} (kips) P _{fb} (kips)		206 27.5 445 228	121 17.2 243 123	181 25.8 366 185	104 15.7 185 101	157 23.5 278 152	90.9 14.3 142 84.0	136 21.5 213 126	78.2 13.0 106 68.5	117 19.5 159 103
$L_p(\mathbf{ft})$ $L_r(\mathbf{ft})$		10.9 46.6		10.8 43.0		10.8 39.9			0.7 7.4	11.9 35.1	
A, (in. ²) I, (n. ⁴)	A _p (in. ²) /, (in. ⁴) /, (in. ⁹) Ratio r, /r, P _a (K2 ²)/10 ⁴ (k-in. ²) P _a (K2 ²)/10 ⁴ (k-in. ²)		8.2 3 0 3.09 1.76 0 0	2 74 24	5.6 0 1 3.07 1.75 0	2 66 21	3.2 2 3.05 1.75 0	2 59 19	1.1 7 5 3.04 1.75 0	19.1 533 174 3.02 1.75 15300 4980	
Ω _c =	SD	LRF ¢ _c = (

AMERICAN INCOMPTOUR OF STREET CONSERVATION INC.

University of Thi-Qar College of Engineering Civil Engineering Department

