

University of Thi-Qar College of Engineering Civil Engineering Department

Method of designs

Limit States in Tension

gross-section yield

net-section fracture

block shear fracture

AISC Manual:

- Chapter B:
- Chapter D:
- Chapter J:
- Part 5:

- Gross and Net Areas Tension Member Strength Block Shear
- **Design Charts and Tables**

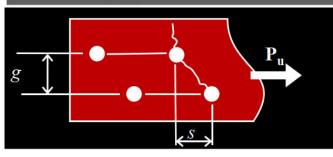
University of Thi-Qar College of Engineering Civil Engineering Department

Sect. J3.]

BOLTS AND THREADED PARTS

105

TABLE J3.3 Nominal Hole Dimensions, in.				
	Hole Dimensions			
Bolt Diameter	Standard (Dia.)	Oversize (Dia.)	Short-Slot (Width \times Length)	Long-slot (Width × Length)
1/2	9/16	5/8	$9/16 \times 11/16$	$9/16 \times 1^{1}/4$
5/8	11/16	13/16	$\frac{11}{16} \times \frac{7}{8}$	$\frac{11}{16} \times \frac{19}{16}$
3/4	13/16	15/16	$\frac{13}{16} \times 1$	$\frac{13}{16} \times \frac{17}{8}$
7/8	15/16	1 ¹ /16	$\frac{15}{16} \times \frac{11}{8}$	$\frac{15}{16} \times \frac{23}{16}$
1	11/16	11/4	$1^{1}/_{16} \times 1^{5}/_{16}$	$1^{1}/_{16} \times 2^{1}/_{2}$
$\geq 1^{1}/8$	$d + \frac{1}{16}$	$d + \frac{5}{16}$	$(d + \frac{1}{16}) \times (d + \frac{3}{8})$	$(d + \frac{1}{16}) \times (2.5 \times d)$

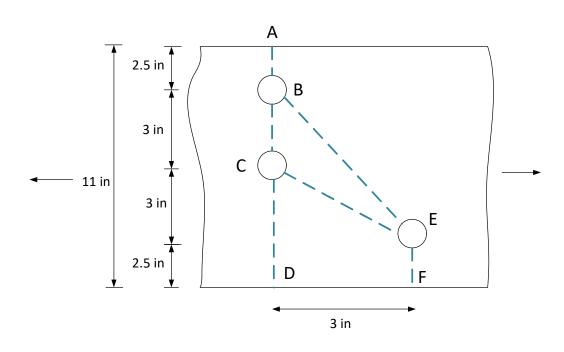

Rupture on Effective Net Area

Staggered holes

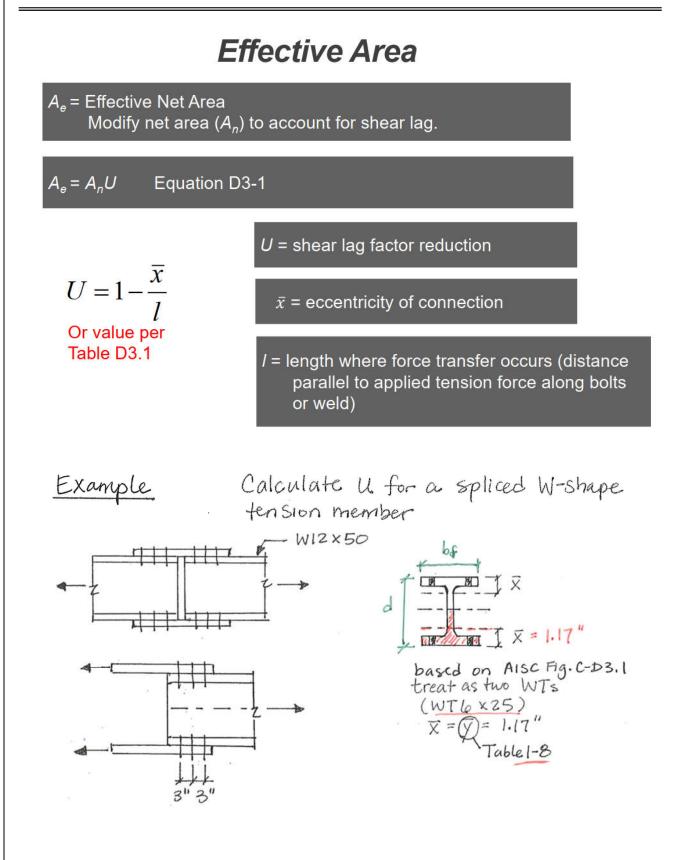
Diagonal hole pattern: Net Width = Gross Width + $\Sigma s^2/4g$ – width of all holes Section B4.3b.

s = longitudinal center-to-center spacing of holes (pitch)

g = transverse center-to-center spacing between fastener lines (gage)



University of Thi-Qar College of Engineering Civil Engineering Department


Example:

Determine the critical net area of the ½ in thick plate as shown, using the AISC Specification (Section B4.3b). The holes are punched for ¾ in bolts.

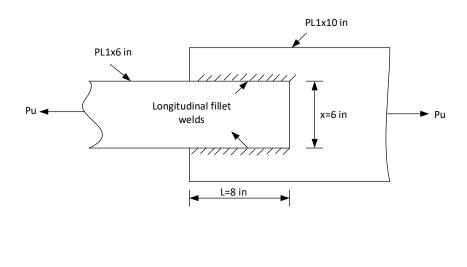
University of Thi-Qar College of Engineering Civil Engineering Department

University of Thi-Qar College of Engineering Civil Engineering Department

$$\frac{\text{Case 2}}{U = 1 - \frac{X}{I}} = 1 - \frac{1.17''}{6''} = 0.81$$

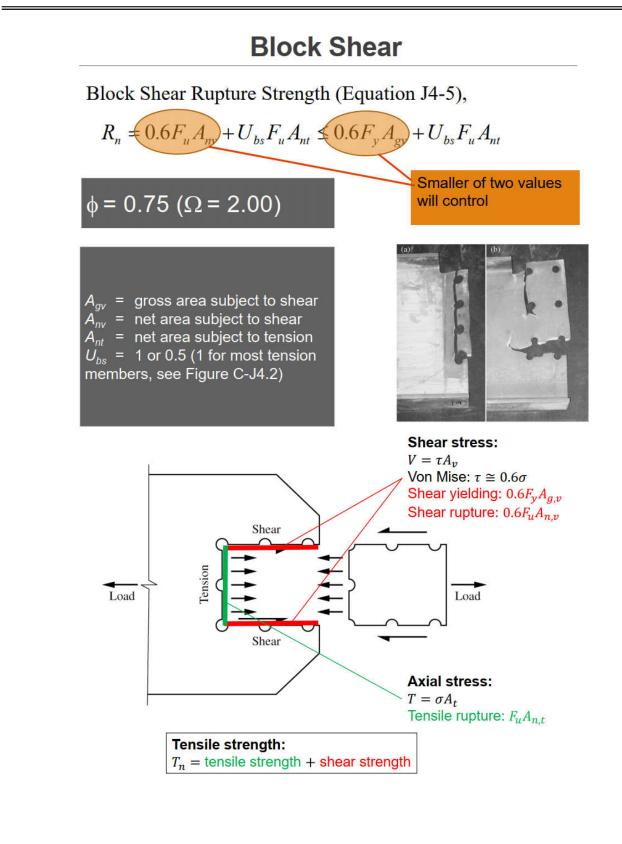
$$\frac{\text{Case 7}}{4^{\text{Hernative}}} (\text{Alternative})$$

$$\frac{\text{At flange}}{3 \text{ or more fasteners per line in direction of loading}}{\frac{b_{\text{F}}}{b_{\text{F}}} \geq 2/3 \text{ d}} \rightarrow U = 0.90$$

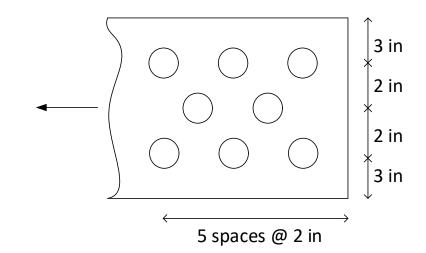

$$\frac{b_{\text{F}}}{b_{\text{F}}} < \frac{2}{3} \text{ d} \rightarrow U = 0.85.$$

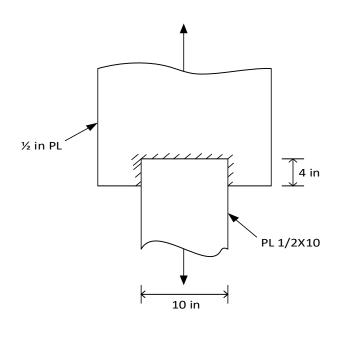
$$\text{Table I-1} \quad \frac{b_{\text{F}}}{d} = \frac{8.08''}{12.2''} = 0.666 \quad \text{and } U = 0.85$$

$$(w_{12} \times 50) \quad \text{d} = \frac{8.08''}{12.2''} = 0.666 \quad \text{and } U = 0.85$$


Example

The 1X6 in plate shown in the figure below is connected to a 1X10 in plate with longitudinal fillet welds to transfer a tensile load. Determine the LRFD design tensile strength and the ASD allowable tensile strength of the member if Fy=50 ksi and Fu=65ksi.

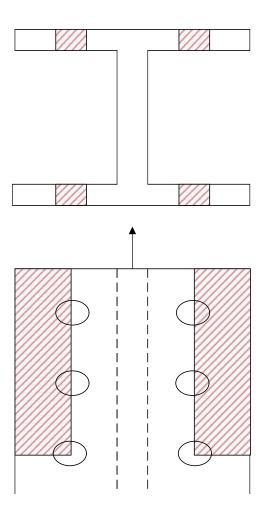

University of Thi-Qar College of Engineering Civil Engineering Department


University of Thi-Qar College of Engineering Civil Engineering Department

What are possible block shear paths?

Example:

Determine the LRFD design strength and the ASD allowable strength of the A36 (Fy=36 ksi, Fu=58 ksi) plates shown. Include block shear strength in the calculations.



University of Thi-Qar College of Engineering Civil Engineering Department

Example:

Determine the LRFD tensile design strength and the ASD tensile strength of the w12x30 (Fy=50 ksi, Fu= 65 ksi) shown below, if 7/8 in bolts are used in the connection. Include block shear calculations for the flanges.

