Class: 4th Year

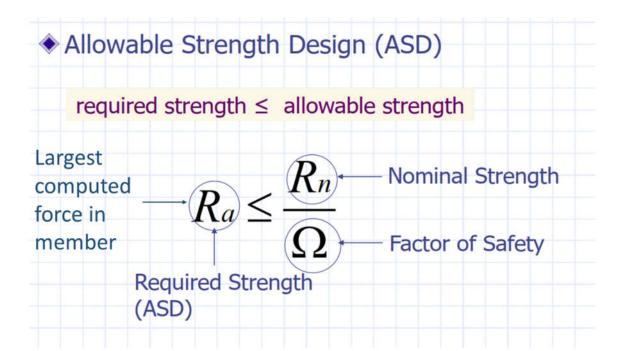
Lecturer: Dr. Wasan Qasim Fayyadh

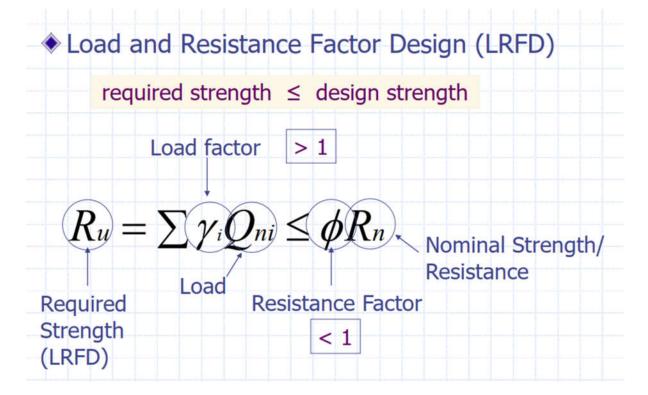
Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Method of designs

- Allowable Strength Design (ASD)
- Load and Resistance Factor Design (LRFD)
- Both procedures are based on limit states design principles.
- Limit states is used to describe a condition at which a structure or part of a structure would be stopped to perform its function.
- - Strength: define load carrying capacity, including (excessive yielding, fracture, buckling, fatigue, and gross rigid body motion).
- Serviceability: define the performance including (deflection, cracking, slipping, vibration, and deterioration.
- All limit states must be prevented.


Class: 4th Year


Lecturer: Dr. Wasan Qasim Fayyadh

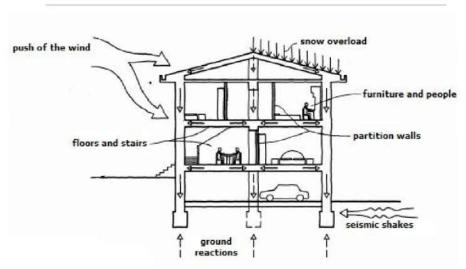
Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2



University of Thi-Qar College of Engineering Civil Engineering Department

ASD Load Combinations

- 1. D
- 2. D+L
- 3. $D + (L_r \text{ or } S \text{ or } R)$
- 4. $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$
- 5. D + (0.6W or 0.7E)
- 6. $D + 0.75L \pm 0.75(0.6W) + 0.75(L_r \text{ or S or R})$
- 7. $D + 0.75L \pm 0.75(0.7E) + 0.75S$
- 8. $0.6D \pm 0.6W$ UPLIFT
- 9. $0.6D \pm 0.7E$ **UPLIFT**

Possible Loads

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

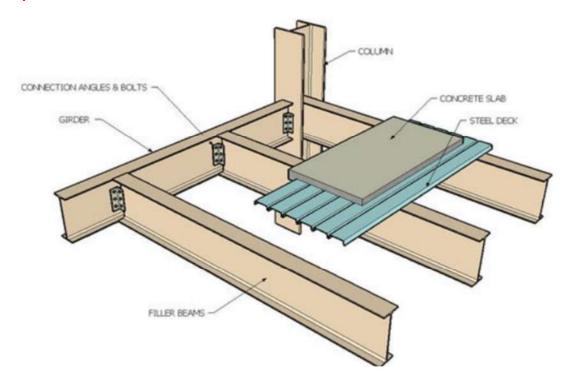
University of Thi-Qar College of Engineering Civil Engineering Department

LRFD Load Combinations

- 1. 1.4D
- 2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (0.5L \text{ or } 0.5W)$
- 4. $1.2D \pm 1.0W + 0.5L + 0.5(L_r \text{ or } S \text{ or } R)$
- 5. $1.2D \pm 1.0E + 0.5L + 0.2S$
- 6. $0.9D \pm 1.0W$ UPLIFT
- 7. $0.9D \pm 1.0E$ UPLIFT

Note: The load factor on $\it L$ in load combinations 3, 4 and 5 is taken as 1.0 if the service live load is greater than 100 psf, and 0.5 for all other cases

Class: 4th Year


Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Load path

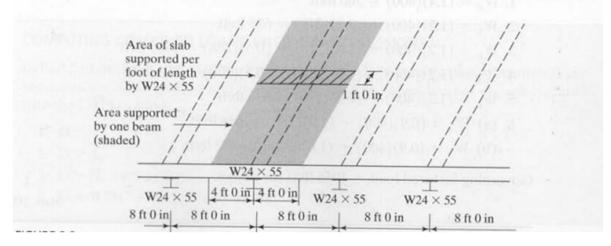
Load path for gravity loads:

- 1. floor slab (metal deck + concrete) → beams
- 2. beams → girders
- 3. girders → columns

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2


University of Thi-Qar College of Engineering Civil Engineering Department

Example 2-1

The interior floor system shown in Figure 2.2 has $W24 \times 55$ sections spaced 8 ft on center and is supporting a floor dead load of 50 psf and a live floor load of 80 psf. Determine the governing load in lb/ft that each beam must support.

Solution. Note that each foot of the beam must support itself (a dead load) plus $8 \times 1 = 8$ ft² of the building floor.

$$D = 55 \text{ lb/ft} + (8 \text{ ft})(50 \text{ psf}) = 455 \text{ lb/ft}$$

 $L = (8 \text{ ft})(80 \text{ psf}) = 640 \text{ lb/ft}$

Computing factored loads, using the LRFD load combinations. In this substitution, the terms having no values are omitted. Note that with a floor live load of 80 psf a load factor of 0.5 has been added to load combinations (3.), (4.), and (5.) per the exception stated in ASCE 7-10 and this text for floor live loads.

6

1.
$$W_u = (1.4)(455) = 637 \text{ lb/ft}$$

2.
$$W_u = (1.2)(455) + (1.6)(640) = 1570 \text{ lb/ft}$$

3.
$$W_{\mu} = (1.2)(455) + (0.5)(640) = 866 \text{ lb/ft}$$

4.
$$W_u = (1.2)(455) + (0.5)(640) = 866 \text{ lb/ft}$$

5.
$$W_u = (1.2)(455) + (0.5)(640) = 866 \text{ lb/ft}$$

6.
$$W_u = (0.9)(455) = 409.5 \text{ lb/ft}$$

7.
$$W_u = (0.9)(455) = 409.5 \text{ lb/ft}$$

Governing factored load = 1570 lb/ft to be used for design.

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Acceptable level of safety

$$R_a \leq \frac{R_n}{\Omega}$$

$$R_{u} = \sum_{i} \dot{Q}_{ni} \leq \phi R_{n}.$$

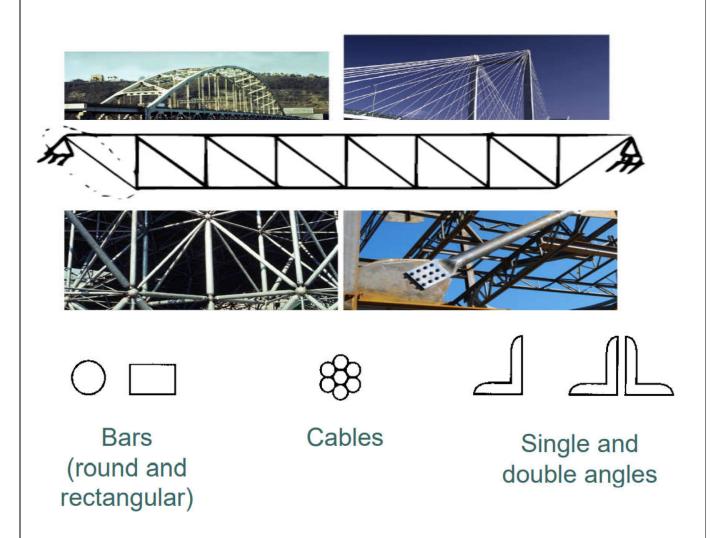
$$\Omega$$
= 1.5/Ø

IF
$$\emptyset = 0.9 \longrightarrow \Omega = 1.67$$

IF
$$\emptyset = 0.75 \longrightarrow \Omega = 2.00$$

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh


Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Tension Members

• Found in bridge, roof trusses, towers, bracing systems, and used as a tie rods.

A few examples of shapes typically used for tension members

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

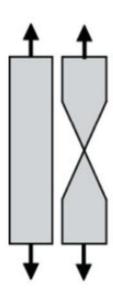
University of Thi-Qar College of Engineering Civil Engineering Department

Limit States in Tension

gross-section yield

net-section fracture

block shear fracture


Gross-section yield

 $\overline{P_n} = \overline{F_y} A_g$

Equation D2-1

$$\phi_t = 0.90 \ (\Omega_t = 1.67)$$

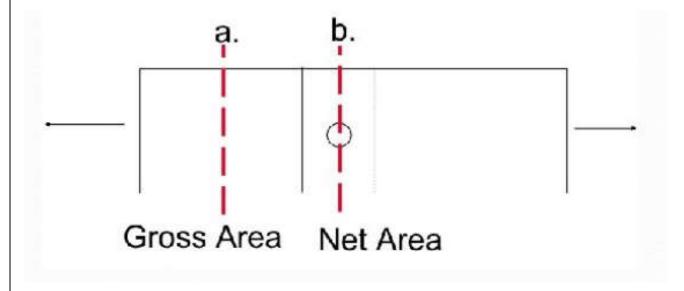
 A_g = Gross Area Total cross-sectional area in the plane perpendicular to tensile stresses.

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department


Net-section fracture

$$P_n = F_u A_e$$

Equation D2-2

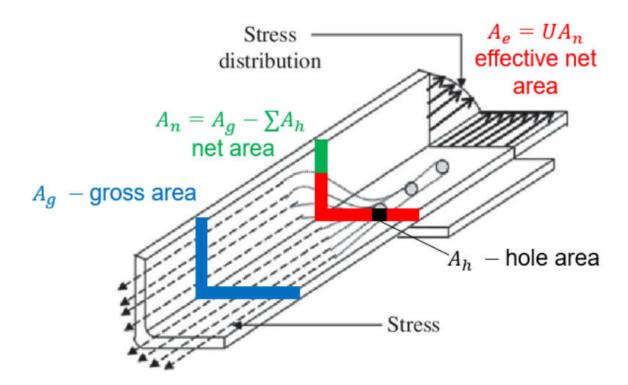
$$\phi_t = 0.75 \ (\Omega_t = 2.00)$$

A_e = Effective Net Area
Accounts for any
holes or openings,
potential failure
planes not
perpendicular to the
tensile stresses, and
effects of shear lag.

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2



University of Thi-Qar College of Engineering Civil Engineering Department

Shear lag factor (U)

 The factor, U, is used to account for the effects of shear lag, which is a reduction in the effective area of a cross section as the stress flows from a uniform distribution in the member to a more concentrated distribution in the vicinity of connections that do not engage the full cross section for force transfer.

Effective Area

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Part 16 (Specifications) Chapter D

	TABLE Shear Lag Factors to Tension	for Connection	ns	
Case	Description of Element	Shear Lag Factor, U	Example	
1	All tension members where the tension load is transmitted directly to each of cross-sectional elements by fasteners or welds. (except as in Cases 3, 4, 5 and 6)	<i>U</i> = 1.0		
2	All tension members, except plates and HSS, where the tension load is transmitted to some but not all of the cross-sectional elements by fasteners or longitudinal welds (Alternatively, for W, M, S and HP, Case 7 may be used.)	$U=1-\overline{X}/I$	X X	
3	All tension members where the tension load is transmitted by transverse welds to some but not all of the cross-sectional elements.	U = 1.0 and $A_n =$ area of the directly connected elements	,	
4	Plates where the tension load is transmitted by longitudinal welds only.	$l \ge 2w \dots U = 1.0$ $2w > l \ge 1.5w \dots U = 0.87$	<u>z</u>	

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh

Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

5-14

DESIGN OF TENSION MEMBERS

Table 5-2 Available Strength in $F_y = 36 \text{ ksi}$ **Axial Tension**

 $F_u = 58 \text{ ksi}$

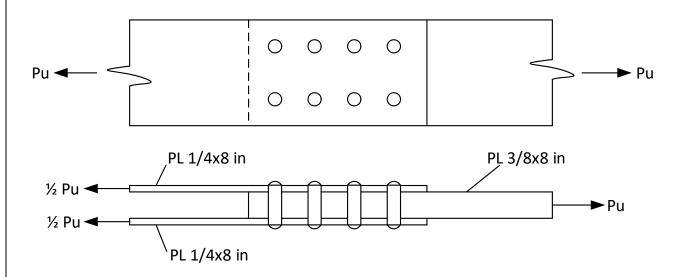
L8-L6

Angles

	A _g 0.7		Yield	ing Rupture		ture
Chana		$A_g = 0.75A_g$ in.2	kips		kips	
Shape			P_n/Ω_t ASD	φ _t P _n LRFD	P_n/Ω_t ASD	φ _t P _n LRFD
L8×8×11/8	16.7	12.5	360	541	363	544
×1	15.0	11.3	323	486	328	492
×7/8	13.2	9.90	285	428	287	431
×3/4	11.4	8.55	246	369	248	372
×5/8	9.61	7.21	207	311	209	314
×9/16	8.68	6.51	187	281	189	283
×1/2	7.75	5.81	167	251	168	253
L8×6×1	13.0	9.75	280	421	283	424
×7/8	11.5	8.63	248	373	250	375
×3/4	9.94	7.46	214	322	216	325
×5/8	8.36	6.27	180	271	182	273
×9/16	7.56	5.67	163	245	164	247
×1/2	6.75	5.06	146	219	147	220
×7/16	5.93	4.45	128	192	129	194

Class: 4th Year

Lecturer: Dr. Wasan Qasim Fayyadh


Lecture: 2

University of Thi-Qar College of Engineering Civil Engineering Department

Example

Determine the net area of the 3/8x8 in plate as shown below. The plate is connected at its end with two lines of ¾ in bolts.

