Thi-Qar University College of Engineering BME Dept

Biomaterial Science

Prepare by Asst Lec. Monaf Ali

Introduction

Biomaterials are used to make devices to replace a part or a function of the body in

safe, reliably economically, and physiologically acceptable manner. A variety of devices

and materials are used in the treatment of disease or injury.

Commonplace examples

include suture needles, plates, teeth fillings, etc.

Term Definitions

Biomaterial: A synthetic material used to make devices to replace part of a living system or

to function in intimate contact with living tissue.

Biological Material: A material that is produced by a biological system.

Bio-compatibility: Acceptance of an artificial implant by the surrounding tissues and by the

body as a whole.

Fields of Knowledge to Develop Biomaterials

1- Science and engineering: (Materials Science) structure-property relationships of

synthetic and biological materials including metals, ceramics, polymers, composites,

tissues (blood and connective tissues), etc.

2- Biology and Physiology: Cell and molecular biology, anatomy, animal and human

physiology, histopathology, experimental surgery, immunology, etc.

3- Clinical Sciences: (All the clinical Specialties) density,

maxillofacial, neurosurgery,

obstetrics and gynecology, ophthalmology, orthopedics, plastic and reconstructive

Outline

surgery, thoracic and cardiovascular surgery, veterinary medicine and surgery, etc.

Introduce the field of biomaterials science and eng g ineering

- Provide introduction to the classification of materials
- Identify and distinguish between the types of atomic bonding

Historical Overview

- What is Materials Science & Engineering
- Classification of Materials
- At i St atomic Structure
- Atomic Bonding

Mechanical Properties of biomaterials

- Mechanical Properties of materials (metals, ceramics, polymers and composites) determine the range of their usefulness and establish the service that can be expected.
- MP are also used to help specify and identify engineering materials

When in service, materials are subjected to loads or forces. Thus:

It is also necessary to know the characteristics of the material A need to design materials which can withstand these applied loads without excessive deformation or failure

Ductility

• Is measure of degree of plastic deformation that has been

sustained at fracture.

- Ductile materials can undergo significant plastic deformation before fracture.
- Brittle materials can tolerate only very small plastic deformation.

Impact Testing: Toughness

- Toughness (notch toughness) is the ability of a material to absorb energy
- 1. Material Toughness (slow absorption)
 - Not a readily observable property
 - Defined by the area under the stress-strain curve
- 2. Impact Toughness (rapid absorption)
 - Ability to absorb energy of an impact without fracturing
 - Toughness, ductility and brittleness are related
 - MECHANICAL FAILURE FATIGUE
 - Fatigue: the weakening or breakdown of a material subject to cyclic stress
 - Cyclic stress can be the result of fluctuations in loads, temperature, swelling, chemical environment, etc.

WEAR

Wear is the erosion of material from a solid surface by the action of another surface.

It is related to surface interactions and more specifically the removal of material from a surface as a result of mechanical action The science and technology of interacting surfaces in relative motion (Friction/Wear & Lubrication)

- Nature of the surfaces and near-surface regions of a solid.
- Surface parameters which are effective on tribological behaviour.
- Mechanical interaction of surfaces in contact.
 - Friction
 - Wear
- Tribological solutions.

FRACTURE

- The mechanical behaviour of a material can be described largely in terms of the materials properties that govern plastic deformation and fracture
- Knowledge and understanding of the relevant properties is the first step toward improving these properties and/or developing new materials with superior properties.
- Plastic deformation occurs by shear, and at much lower shear stresses (or tensile yield stresses) than the theoretical shear stress as a result of *dislocation slip*.
- Fortunately, a number of strengthening mechanisms exist, whereby the yield strength of ductile materials can be enhanced considerably

How do atoms arrange themselves to form solids?

- Fundamental concepts and language
- Unit cells

- Crystal structures
 - Face-centered cubic
 - Body-centered cubic
 - Hexagonal close-packed
- Close packed crystal structures
- Density computations
- Types of solids

Single crystal

Polycrystalline

Amorphous

Crystals are like people, it is the defects in them which tend to make them interesting!" - Colin Humphreys.

Defects in Solids 0D, Point defects vacancies interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain boundaries tilt twist 3D, Bulk or Volume defects

Atomic vibrations