
Chapter 48

Standard integration

48.1 The process of integration

The process of integration reverses the process of

differentiation. In differentiation, if f (x) = 2x2 then

f ′(x) = 4x. Thus the integral of 4x is 2x2, i.e. integration

is the process of moving from f ′(x) to f (x). By similar

reasoning, the integral of 2t is t2.

Integration is a process of summation or adding parts

together and an elongated S, shown as
∫

, is used to

replace the words ‘the integral of’. Hence, from above,
∫

4x = 2x2 and
∫

2t is t2.

In differentiation, the differential coefficient
dy

dx
indi-

cates that a function of x is being differentiated with

respect to x, the dx indicating that it is ‘with respect to

x′. In integration the variable of integration is shown by

adding d(the variable) after the function to be integrated.

Thus

∫

4x dx means ‘the integral of 4x

with respect to x′,

and

∫

2t dt means ‘the integral of 2t

with respect to t′

As stated above, the differential coefficient of 2x2 is 4x,

hence
∫

4x dx = 2x2. However, the differential coeffi-

cient of 2x2 + 7 is also 4x. Hence
∫

4xdx is also equal

to 2x2 + 7. To allow for the possible presence of a con-

stant, whenever the process of integration is performed,

a constant ‘c’ is added to the result.

Thus

∫

4x dx = 2x2 + c and

∫

2t dt = t2 + c

‘c’ is called the arbitrary constant of integration.

48.2 The general solution of
integrals of the form axn

The general solution of integrals of the form
∫

axndx,

where a and n are constants is given by:

∫

axndx =
axn+1

n + 1
+ c

This rule is true when n is fractional, zero, or a positive

or negative integer, with the exception of n = −1.

Using this rule gives:

(i)

∫

3x4dx =
3x4+1

4 + 1
+ c =

3

5
x5

+ c

(ii)

∫

2

x2
dx =

∫

2x−2dx =
2x−2+1

−2 + 1
+ c

=
2x−1

−1
+ c =

−2

x
+ c, and

(iii)

∫ √
x dx =

∫

x1/2dx =
x

1
2
+1

1

2
+ 1

+ c

=
x

3
2

3

2

+ c =
2

3

√
x3 + c

Each of these three results may be checked by differen-

tiation.

(a) The integral of a constant k is kx + c. For example,

∫

8 dx = 8x + c
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(b) When a sum of several terms is integrated the result

is the sum of the integrals of the separate terms.

For example,

∫

(3x + 2x2 − 5)dx

=
∫

3x dx +
∫

2x2dx −
∫

5 dx

=
3x2

2
+

2x3

3
− 5x + c

48.3 Standard integrals

Since integration is the reverse process of differentia-

tion the standard integrals listed in Table 48.1 may be

deduced and readily checked by differentiation.

Table 48.1 Standard integrals

(i)

∫

axn dx =
axn+1

n + 1
+ c

(except when n = −1)

(ii)

∫

cos ax dx =
1

a
sin ax + c

(iii)

∫

sin ax dx =−
1

a
cos ax + c

(iv)

∫

sec2 ax dx =
1

a
tan ax + c

(v)

∫

cosec2ax dx = −
1

a
cot ax + c

(vi)

∫

cosec ax cot ax dx = −
1

a
cosec ax + c

(vii)

∫

sec ax tan ax dx =
1

a
sec ax + c

(viii)

∫

eaxdx =
1

a
eax + c

(ix)

∫

1

x
dx = ln x + c

Problem 1. Determine:

(a)

∫

5x2dx (b)

∫

2t3dt

The standard integral,

∫

axn dx =
axn+1

n + 1
+ c

(a) When a = 5 and n = 2 then
∫

5x2dx =
5x2+1

2 + 1
+ c =

5x3

3
+ c

(b) When a = 2 and n = 3 then
∫

2t3dt =
2t3+1

3 + 1
+ c =

2t4

4
+ c =

1

2
t4

+ c

Each of these results may be checked by differentiating

them.

Problem 2. Determine

∫ (

4 +
3

7
x − 6x2

)

dx

∫ (

4 +
3

7
x − 6x2

)

dx may be written as

∫

4 dx +
∫

3

7
x dx −

∫

6x2 dx

i.e. each term is integrated separately. (This splitting

up of terms only applies, however, for addition and

subtraction).

Hence

∫ (

4 +
3

7
x − 6x2

)

dx

= 4x +
(

3

7

)

x1+1

1 + 1
− (6)

x2+1

2 + 1
+ c

= 4x +
(

3

7

)

x2

2
− (6)

x3

3
+ c

= 4x +
3

14
x2

− 2x3
+ c

Note that when an integral contains more than one term

there is no need to have an arbitrary constant for each;

just a single constant at the end is sufficient.

Problem 3. Determine

(a)

∫

2x3 − 3x

4x
dx (b)

∫

(1 − t)2dt

(a) Rearranging into standard integral form gives:

∫

2x3 − 3x

4x
dx =

∫

2x3

4x
−

3x

4x
dx

=
∫

x2

2
−

3

4
dx =

(

1

2

)

x2+1

2 + 1
−

3

4
x + c

=
(

1

2

)

x3

3
−

3

4
x + c =

1

6
x3

−
3

4
x + c
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(b) Rearranging
∫

(1 − t)2dt gives:

∫

(1 − 2t + t2)dt = t −
2t1+1

1 + 1
+

t2+1

2 + 1
+ c

= t −
2t2

2
+

t3

3
+ c

= t − t2
+

1

3
t3

+ c

This problem shows that functions often have to be rear-

ranged into the standard form of
∫

axndx before it is

possible to integrate them.

Problem 4. Determine

∫

3

x2
dx

∫

3

x2
dx =

∫

3x−2. Using the standard integral,
∫

axndx when a = 3 and n = −2 gives:

∫

3x−2dx =
3x−2+1

−2 + 1
+ c =

3x−1

−1
+ c

= −3x−1 + c =
−3

x
+ c

Problem 5. Determine

∫

3
√

xdx

For fractional powers it is necessary to appreciate
n
√

am = a
m
n

∫

3
√

xdx =
∫

3x1/2dx =
3x

1
2
+1

1

2
+ 1

+ c

=
3x

3
2

3

2

+ c = 2x
3
2 + c = 2

√

x3 + c

Problem 6. Determine

∫ −5

9
4
√

t3
dt

∫ −5

9
4
√

t3
dt =

∫ −5

9t
3
4

dt =
∫ (

−
5

9

)

t−
3
4 dt

=
(

−
5

9

)

t−
3
4
+1

−
3

4
+ 1

+ c

=
(

−
5

9

)

t
1
4

1
4

+ c =
(

−
5

9

) (

4

1

)

t1/4 + c

= −
20

9

4
√

t + c

Problem 7. Determine

∫

(1 + θ)2

√
θ

dθ

∫

(1 + θ)2

√
θ

dθ =
∫

(1 + 2θ + θ2)
√

θ
dθ

=
∫ (

1

θ
1
2

+
2θ

θ
1
2

+
θ2

θ
1
2

)

dθ

=
∫

(

θ− 1
2 + 2θ1−

(

1
2

)

+ θ2−
(

1
2

)

)

dθ

=
∫

(

θ− 1
2 + 2θ

1
2 + θ

3
2

)

dθ

=
θ
(

− 1
2

)

+1

− 1
2

+ 1
+

2θ
(

1
2

)

+1

1
2

+ 1
+

θ
(

3
2

)

+1

3
2

+ 1
+ c

=
θ

1
2

1
2

+
2θ

3
2

3
2

+
θ

5
2

5
2

+ c

= 2θ
1
2 +

4

3
θ

3
2 +

2

5
θ

5
2 + c

= 2
√

θ +
4

3

√

θ
3
+

2

5

√

θ
5
+ c

Problem 8. Determine

(a)

∫

4 cos 3x dx (b)

∫

5 sin 2θ dθ

(a) From Table 48.1 (ii),

∫

4 cos 3x dx = (4)

(

1

3

)

sin 3x + c

=
4

3
sin 3x + c

(b) From Table 48.1(iii),

∫

5 sin 2θ dθ = (5)

(

−
1

2

)

cos 2θ + c

= −
5

2
cos 2θ + c
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Problem 9. Determine (a)

∫

7 sec2 4t dt

(b) 3

∫

cosec22θ dθ

(a) From Table 48.1(iv),
∫

7 sec2 4t dt = (7)

(

1

4

)

tan 4t + c

=
7

4
tan 4t + c

(b) From Table 48.1(v),

3

∫

cosec22θ dθ = (3)

(

−
1

2

)

cot 2θ + c

= −
3

2
cot 2θ + c

Problem 10. Determine (a)

∫

5e3xdx

(b)

∫

2

3e4t
dt

(a) From Table 48.1(viii),
∫

5e3xdx = (5)

(

1

3

)

e3x + c =
5

3
e3x

+ c

(b)

∫

2

3e4t
dt =

∫

2

3
e−4tdt

=
(

2

3

) (

−
1

4

)

e−4t + c

= −
1

6
e−4t + c = −

1

6e4t
+ c

Problem 11. Determine

(a)

∫

3

5x
dx (b)

∫ (

2m2 + 1

m

)

dm

(a)

∫

3

5x
dx =

∫ (

3

5

) (

1

x

)

dx =
3

5
ln x + c

(from Table 48.1(ix))

(b)

∫ (

2m2 + 1

m

)

dm =
∫ (

2m2

m
+

1

m

)

dm

=
∫ (

2m +
1

m

)

dm

=
2m2

2
+ ln m + c

= m2
+ ln m + c

Now try the following exercise

Exercise 172 Further problems on standard

integrals

Determine the following integrals:

1. (a)

∫

4 dx (b)

∫

7x dx

[

(a) 4x + c (b)
7x2

2
+ c

]

2. (a)

∫

2

5
x2dx (b)

∫

5

6
x3dx

[

(a)
2

15
x3 + c (b)

5

24
x4 + c

]

3. (a)

∫ (

3x2 − 5x

x

)

dx (b)

∫

(2 + θ)2dθ









(a)
3x2

2
− 5x + c

(b) 4θ + 2θ2 +
θ3

3
+ c









4. (a)

∫

4

3x2
dx (b)

∫

3

4x4
dx

[

(a)
−4

3x
+ c (b)

−1

4x3
+ c

]

5. (a) 2

∫ √
x3dx (b)

∫

1

4

4
√

x5dx

[

(a)
4

5

√
x5 + c (b)

1

9

4
√

x9 + c

]

6. (a)

∫ −5
√

t3
dt (b)

∫

3

7
5
√

x4
dx

[

(a)
10
√

t
+ c (b)

15

7
5
√

x + c

]

7. (a)

∫

3 cos 2x dx (b)

∫

7 sin 3θdθ







(a)
3

2
sin 2x + c

(b) −
7

3
cos 3θ + c







8. (a)

∫

3

4
sec2 3x dx (b)

∫

2 cosec24θ dθ

[

(a)
1

4
tan 3x + c (b) −

1

2
cot 4θ + c

]
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9. (a) 5

∫

cot 2t cosec 2t dt

(b)

∫

4

3
sec 4t tan 4t dt

[

(a) −
5

2
cosec 2t + c (b)

1

3
sec 4t + c

]

10. (a)

∫

3

4
e2xdx (b)

2

3

∫

dx

e5x

[

(a)
3

8
e2x + c (b)

−2

15e5x
+ c

]

11. (a)

∫

2

3x
dx (b)

∫ (

u2 − 1

u

)

du

[

(a)
2

3
ln x + c (b)

u2

2
− ln u + c

]

12. (a)

∫

(2 + 3x)2

√
x

dx (b)

∫ (

1

t
+ 2t

)2

dt







(a) 8
√

x + 8
√

x3 +
18

5

√
x5 + c

(b) −
1

t
+ 4t +

4t3

3
+ c







48.4 Definite integrals

Integrals containing an arbitrary constant c in their

results are called indefinite integrals since their precise

value cannot be determined without further information.

Definite integrals are those in which limits are applied.

If an expression is written as [x]b
a, ‘b’ is called the upper

limit and ‘a’ the lower limit.

The operation of applying the limits is defined as:

[x]b
a = (b) − (a)

The increase in the value of the integral x2 as x increases

from 1 to 3 is written as
∫ 3

1
x2 dx

Applying the limits gives:

∫ 3

1

x2dx =
[

x3

3
+ c

]3

1

=
(

33

3
+ c

)

−
(

13

3
+ c

)

= (9 + c) −
(

1

3
+ c

)

= 8
2

3

Note that the ‘c’ term always cancels out when limits are

applied and it need not be shown with definite integrals.

Problem 12. Evaluate (a)

∫ 2

1

3x dx

(b)

∫ 3

−2

(4 − x2)dx

(a)

∫ 2

1

3x dx =
[

3x2

2

]2

1

=
{

3

2
(2)2

}

−
{

3

2
(1)2

}

= 6 − 1
1

2
= 4

1

2

(b)

∫ 3

−2

(4 − x2)dx =
[

4x −
x3

3

]3

−2

=
{

4(3) −
(3)3

3

}

−
{

4(−2) −
(−2)3

3

}

= {12 − 9} −
{

−8 −
−8

3

}

= {3} −
{

−5
1

3

}

= 8
1

3

Problem 13. Evaluate

∫ 4

1

(

θ + 2
√

θ

)

dθ, taking

positive square roots only

∫ 4

1

(

θ + 2
√

θ

)

dθ =
∫ 4

1

(

θ

θ
1
2

+
2

θ
1
2

)

dθ

=
∫ 4

1

(

θ
1
2 + 2θ− 1

2

)

dθ

=







θ
(

1
2

)

+1

1

2
+ 1

+
2θ

(

− 1
2

)

+1

−
1

2
+ 1







4

1

=







θ
3
2

3

2

+
2θ

1
2

1

2







4

1

=
[

2

3

√
θ3 + 4

√
θ

]4

1

=
{

2

3

√

(4)3 + 4
√

4

}

−
{

2

3

√

(1)3 + 4
√

1

}

=
{

16

3
+ 8

}

−
{

2

3
+ 4

}

= 5
1

3
+ 8 −

2

3
− 4 = 8

2

3
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Problem 14. Evaluate:

∫ π/2

0

3 sin 2x dx

∫ π
2

0

3 sin 2x dx

=
[

(3)

(

−
1

2

)

cos 2x

]
π
2

0

=
[

−
3

2
cos 2x

]
π
2

0

=
{

−
3

2
cos 2

(π

2

)

}

−
{

−
3

2
cos 2(0)

}

=
{

−
3

2
cos π

}

−
{

−
3

2
cos 0

}

=
{

−
3

2
(−1)

}

−
{

−
3

2
(1)

}

=
3

2
+

3

2
= 3

Problem 15. Evaluate

∫ 2

1

4 cos 3t dt

∫ 2

1

4 cos 3t dt =
[

(4)

(

1

3

)

sin 3t

]2

1

=
[

4

3
sin 3t

]2

1

=
{

4

3
sin 6

}

−
{

4

3
sin 3

}

Note that limits of trigonometric functions are always

expressed in radians—thus, for example, sin 6 means

the sine of 6 radians = −0.279415 . . .

Hence

∫ 2

1

4 cos 3t dt =
{

4

3
(−0.279415 . . . )

}

−
{

4

3
(−0.141120 . . . )

}

= (−0.37255) − (0.18816) = −0.5607

Problem 16. Evaluate

(a)

∫ 2

1

4e2x dx (b)

∫ 4

1

3

4u
du,

each correct to 4 significant figures

(a)

∫ 2

1

4e2x dx =
[

4

2
e2x

]2

1

= 2[e2x]2
1 = 2[e4 − e2]

= 2[54.5982 − 7.3891] = 94.42

(b)

∫ 4

1

3

4u
du =

[

3

4
ln u

]4

1

=
3

4
[ ln 4 − ln 1]

=
3

4
[1.3863 − 0] = 1.040

Now try the following exercise

Exercise 173 Further problems on definite

integrals

In Problems 1 to 8, evaluate the definite integrals

(where necessary, correct to 4 significant figures).

1. (a)

∫ 4

1

5x2dx (b)

∫ 1

−1

−
3

4
t2dt

[

(a) 105 (b) −
1

2

]

2. (a)

∫ 2

−1

(3 − x2)dx (b)

∫ 3

1

(x2 − 4x + 3)dx
[

(a) 6 (b) −1
1

3

]

3. (a)

∫ π

0

3

2
cos θ dθ (b)

∫ π
2

0

4 cos θ dθ

[(a) 0 (b) 4]

4. (a)

∫ π
3

π
6

2 sin 2θ dθ (b)

∫ 2

0

3 sin t dt

[(a) 1 (b) 4.248]

5. (a)

∫ 1

0

5 cos 3x dx (b)

∫ π
6

0

3 sec2 2x dx

[(a) 0.2352 (b) 2.598]

6. (a)

∫ 2

1

cosec24t dt

(b)

∫ π
2

π
4

(3 sin 2x − 2 cos 3x)dx

[(a) 0.2572 (b) 2.638]

7. (a)

∫ 1

0

3e3t dt (b)

∫ 2

−1

2

3e2x
dx

[(a) 19.09 (b) 2.457]

8. (a)

∫ 3

2

2

3x
dx (b)

∫ 3

1

2x2 + 1

x
dx

[(a) 0.2703 (b) 9.099]
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9. The entropy change 1S, for an ideal gas is

given by:

1S =
∫ T2

T1

Cv

dT

T
− R

∫ V2

V1

dV

V

where T is the thermodynamic temperature,

V is the volume and R = 8.314. Determine the

entropy change when a gas expands from 1 litre

to 3 litres for a temperature rise from 100 K to

400 K given that:

Cv = 45 + 6 × 10−3T + 8 × 10−6T2

[55.65]

10. The p.d. between boundaries a and b of an

electric field is given by: V =
∫ b

a

Q

2πrε0εr

dr

If a = 10, b = 20, Q = 2 × 10−6 coulombs,

ε0 = 8.85 × 10−12 and εr = 2.77, show that

V = 9 kV.

11. The average value of a complex voltage

waveform is given by:

VAV =
1

π

∫ π

0

(10 sin ωt + 3 sin 3ωt

+ 2 sin 5ωt)d(ωt)

Evaluate VAV correct to 2 decimal places.

[7.26]



Chapter 49

Integration using algebraic
substitutions

49.1 Introduction

Functions that require integrating are not always in the

‘standard form’ shown in Chapter 48. However, it is

often possible to change a function into a form which

can be integrated by using either:

(i) an algebraic substitution (see Section 49.2),

(ii) trigonometric substitutions (see Chapter 50),

(iii) partial fractions (see Chapter 51),

(iv) the t = tan θ
2

substitution (see Chapter 52), or

(v) integration by parts (see Chapter 53).

49.2 Algebraic substitutions

With algebraic substitutions, the substitution usually

made is to let u be equal to f (x) such that f (u) du is a

standard integral. It is found that integrals of the forms:

k

∫

[f (x)]nf ′(x)dx and k

∫

f ′(x)n

[f (x)]
dx

(where k and n are constants) can both be integrated by

substituting u for f (x).

49.3 Worked problems on
integration using algebraic
substitutions

Problem 1. Determine

∫

cos(3x + 7) dx

∫

cos(3x + 7) dx is not a standard integral of the form

shown in Table 48.1, page 436, thus an algebraic

substitution is made.

Let u = 3x + 7 then
du

dx
= 3 and rearranging gives

dx =
du

3

Hence

∫

cos (3x + 7) dx =
∫

( cos u)
du

3

=
∫

1

3
cos u du,

which is a standard integral

=
1

3
sin u + c

Rewriting u as (3x + 7) gives:
∫

cos (3x + 7) dx =
1

3
sin(3x + 7) + c,

which may be checked by differentiating it.

Problem 2. Find:

∫

(2x − 5)7dx

(2x − 5) may be multiplied by itself 7 times and then

each term of the result integrated. However, this would

be a lengthy process, and thus an algebraic substitution

is made.

Let u = (2x − 5) then
du

dx
= 2 and dx =

du

2
Hence

∫

(2x − 5)7dx =
∫

u7 du

2
=

1

2

∫

u7du

=
1

2

(

u8

8

)

+ c =
1

16
u8 + c
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Rewriting u as (2x − 5) gives:

∫

(2x − 5)7dx =
1

16
(2x − 5)8

+ c

Problem 3. Find:

∫

4

(5x − 3)
dx

Let u = (5x − 3) then
du

dx
= 5 and dx =

du

5

Hence

∫

4

(5x − 3)
dx =

∫

4

u

du

5
=

4

5

∫

1

u
du

=
4

5
ln u + c

=
4

5
ln(5x − 3) + c

Problem 4. Evaluate

∫ 1

0

2e6x−1dx, correct to 4

significant figures

Let u = 6x − 1 then
du

dx
= 6 and dx =

du

6

Hence

∫

2e6x−1dx =
∫

2eu du

6
=

1

3

∫

eudu

=
1

3
eu + c =

1

3
e6x−1 + c

Thus

∫ 1

0

2e6x−1dx =
1

3

[

e6x−1
]1

0

=
1

3
[e5 − e−1] = 49.35,

correct to 4 significant figures.

Problem 5. Determine:

∫

3x(4x2 + 3)5dx

Let u = (4x2 + 3) then
du

dx
= 8x and dx =

du

8x
Hence

∫

3x(4x2 + 3)5dx =
∫

3x(u)5 du

8x

=
3

8

∫

u5du, by cancelling

The original variable ‘x’ has been completely removed

and the integral is now only in terms of u and is a

standard integral.

Hence
3

8

∫

u5du =
3

8

(

u6

6

)

+ c =
1

16
u6 + c

=
1

16
(4x2

+ 3)6
+ c

Problem 6. Evaluate:

∫ π/6

0

24 sin5 θ cos θd θ

Let u = sin θ then
du

dθ
= cos θ and dθ =

du

cos θ

Hence

∫

24 sin5 θ cos θ dθ

=
∫

24u5cos θ
du

cos θ

= 24

∫

u5du, by cancelling

= 24
u6

6
+ c = 4u6 + c = 4( sin θ)6 + c

= 4 sin6 θ + c

Thus

∫ π/6

0

24 sin5 θ cos θ dθ

=
[

4 sin6 θ
]π/6

0
= 4

[

(

sin
π

6

)6

− ( sin 0)6

]

= 4

[

(

1

2

)6

− 0

]

=
1

16
or 0.0625

Now try the following exercise

Exercise 174 Further problems on

integration using algebraic

substitutions

In Problems 1 to 6, integrate with respect to the

variable.

1. 2 sin(4x + 9)

[

−
1

2
cos (4x + 9) + c

]

2. 3 cos(2θ − 5)

[

3

2
sin (2θ − 5) + c

]



444 Engineering Mathematics
Se

ct
io

n
9

3. 4 sec2(3t + 1)

[

4

3
tan(3t + 1) + c

]

4.
1

2
(5x − 3)6

[

1

70
(5x − 3)7 + c

]

5.
−3

(2x − 1)

[

−
3

2
ln(2x − 1) + c

]

6. 3e3θ + 5 [e3θ + 5 + c]

In Problems 7 to 10, evaluate the definite integrals

correct to 4 significant figures.

7.

∫ 1

0

(3x + 1)5dx [227.5]

8.

∫ 2

0

x
√

2x2 + 1 dx [4.333]

9.

∫ π/3

0

2sin
(

3t +
π

4

)

dt [0.9428]

10.

∫ 1

0

3cos(4x − 3)dx [0.7369]

49.4 Further worked problems on
integration using algebraic
substitutions

Problem 7. Find:

∫

x

2 + 3x2
dx

Let u = 2 + 3x2 then
du

dx
= 6x and dx =

du

6x

Hence

∫

x

2 + 3x2
dx

=
∫

x

u

du

6x
=

1

6

∫

1

u
du, by cancelling,

=
1

6
ln u + x

=
1

6
ln(2 + 3x2) + c

Problem 8. Determine:

∫

2x
√

4x2 − 1
dx

Let u = 4x2 − 1 then
du

dx
= 8x and dx =

du

8x

Hence

∫

2x
√

4x2 − 1
dx

=
∫

2x
√

u

du

8x
=

1

4

∫

1
√

u
du, by cancelling

=
1

4

∫

u−1/2du

=
1

4

[

u(−1/2)+1

− 1
2

+ 1

]

+ c =
1

4

[

u1/2

1
2

]

+ c

=
1

2

√
u + c =

1

2

√

4x2 − 1 + c

Problem 9. Show that:
∫

tan θ dθ = ln( sec θ) + c

∫

tan θ dθ =
∫

sin θ

cosθ
dθ.

Let u = cos θ

then
du

dθ
= −sinθ and dθ =

−du

sin θ
Hence

∫

sin θ

cos θ
dθ =

∫

sin θ

u

(

−du

sin θ

)

= −
∫

1

u
du = −ln u + c

= −ln( cos θ) + c

= ln( cos θ)−1 + c,

by the laws of logarithms

Hence

∫

tan θ dθ = ln(sec θ) + c,

since ( cos θ)−1 =
1

cos θ
= sec θ

49.5 Change of limits

When evaluating definite integrals involving substi-

tutions it is sometimes more convenient to change

the limits of the integral as shown in Problems 10

and 11.
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Problem 10. Evaluate:

∫ 3

1

5x
√

2x2 + 7 dx,

taking positive values of square roots only

Let u = 2x2 + 7, then
du

dx
= 4x and dx =

du

4x

It is possible in this case to change the limits of inte-

gration. Thus when x = 3, u = 2(3)2 + 7 = 25 and when

x = 1, u = 2(1)2 + 7 = 9

Hence

∫ x=3

x=1

5x
√

2x2 + 7 dx

=
∫ u=25

u=9

5x
√

u
du

4x
=

5

4

∫ 25

9

√
u du

=
5

4

∫ 25

9

u1/2du

Thus the limits have been changed, and it is unnecessary

to change the integral back in terms of x.

Thus

∫ x=3

x=1

5x
√

2x2 + 7 dx

=
5

4

[

u3/2

3/2

]25

9

=
5

6

[√
u3

]25

9

=
5

6
[
√

253 −
√

93] =
5

6
(125 − 27) = 81

2

3

Problem 11. Evaluate:

∫ 2

0

3x
√

2x2 + 1
dx, taking

positive values of square roots only

Let u = 2x2 + 1 then
du

dx
= 4x and dx =

du

4x

Hence

∫ 2

0

3x
√

2x2 + 1
dx =

∫ x=2

x=0

3x
√

u

du

4x

=
3

4

∫ x=2

x=0

u−1/2du

Since u = 2x2 + 1, when x = 2, u = 9 and when x = 0,

u = 1

Thus
3

4

∫ x=2

x=0

u−1/2 du =
3

4

∫ u=9

u=1

u−1/2 du,

i.e. the limits have been changed

=
3

4

[

u1/2

1
2

]9

1

=
3

2
[
√

9 −
√

1] = 3,

taking positive values of square roots only.

Now try the following exercise

Exercise 175 Further problems on

integration using algebraic

substitutions

In Problems 1 to 7, integrate with respect to the

variable.

1. 2x(2x2 − 3)5

[

1

12
(2x2 − 3)6 + c

]

2. 5 cos5 t sin t

[

−
5

6
cos6 t + c

]

3. 3sec2 3x tan 3x

[

1

2
sec2 3x + c or

1

2
tan2 3x + c

]

4. 2t
√

3t2 − 1

[

2

9

√

(3t2 − 1)3 + c

]

5.
ln θ

θ

[

1

2
( ln θ)2 + c

]

6. 3 tan 2t

[

3

2
ln(sec 2t) + c

]

7.
2et

√
et + 4

[4
√

et + 4 + c]

In Problems 8 to 10, evaluate the definite integrals

correct to 4 significant figures.

8.

∫ 1

0

3xe(2x2−1)dx [1.763]

9.

∫ π/2

0

3 sin4 θ cos θ dθ [0.6000]

10.

∫ 1

0

3x

(4x2 − 1)5
dx [0.09259]
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11. The electrostatic potential on all parts of a

conducting circular disc of radius r is given

by the equation:

V = 2πσ

∫ 9

0

R
√

R2 + r2
dR

Solve the equation by determining the inte-

gral.
[

V = 2πσ

{
√

(

92 + r2
)

− r
}]

12. In the study of a rigid rotor the following inte-

gration occurs:

Zr =
∫ ∞

0

(2J + 1) e
−J(J+1) h2

8π2IkT dJ

Determine Zr for constant temperature T

assuming h, I and k are constants.
[

8π2IkT

h2

]

13. In electrostatics,

E =
∫ π

0











a2σ sin θ

2 ε

√

(

a2 − x2 − 2ax cos θ
)

dθ











where a, σ and ε are constants, x is greater

than a, and x is independent of θ. Show that

E =
a2σ

ε x



Chapter 50

Integration using
trigonometric substitutions

50.1 Introduction

Table 50.1 gives a summary of the integrals that require

the use of trigonometric substitutions, and their

application is demonstrated in Problems 1 to 19.

50.2 Worked problems on
integration of sin2x, cos2x,
tan2x and cot2x

Problem 1. Evaluate:

∫ π
4

0

2 cos2 4t dt

Since cos 2t = 2 cos2 t − 1 (from Chapter 27),

then cos2 t =
1

2
(1 + cos 2t) and

cos2 4t =
1

2
(1 + cos 8t)

Hence

∫ π
4

0

2 cos2 4t dt

= 2

∫ π
4

0

1

2
(1 + cos 8t) dt

=
[

t +
sin 8t

8

]
π
4

0

=







π

4
+

sin 8
(π

4

)

8






−

[

0 +
sin 0

8

]

=
π

4
or 0.7854

Problem 2. Determine:

∫

sin2 3x dx

Since cos 2x = 1 − 2 sin2 x (from Chapter 27),

then sin2 x =
1

2
(1 − cos 2x) and

sin2 3x =
1

2
(1 − cos 6x)

Hence

∫

sin2 3x dx =
∫

1

2
(1 − cos 6x) dx

=
1

2

(

x −
sin 6x

6

)

+ c

Problem 3. Find: 3

∫

tan2 4x dx

Since 1 + tan2 x = sec2 x, then tan2 x = sec2 x − 1 and

tan2 4x = sec2 4x − 1

Hence 3

∫

tan2 4x dx = 3

∫

(sec24x − 1) dx

= 3

(

tan 4x

4
− x

)

+ c

Problem 4. Evaluate

∫ π
3

π
6

1

2
cot2 2θ dθ
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Table 50.1 Integrals using trigonometric substitutions

f (x)
∫

f (x)dx Method See problem

1. cos2 x
1

2

(

x +
sin 2x

2

)

+ c Use cos 2x = 2 cos2 x − 1 1

2. sin2 x
1

2

(

x −
sin 2x

2

)

+ c Use cos 2x = 1 − 2 sin2 x 2

3. tan2 x tan x − x + c Use 1 + tan2 x = sec2 x 3

4. cot2 x −cot x − x + c Use cot2 x + 1 = cosec2 x 4

5. cosm x sinn x (a) If either m or n is odd (but not both), use 5, 6

cos2 x + sin2 x = 1

(b) If both m and n are even, use either 7, 8

cos 2x = 2 cos2 x − 1 or cos 2x = 1 − 2 sin2 x

6. sin A cos B Use
1

2
[sin(A + B) + sin(A − B)] 9

7. cos A sin B Use
1

2
[sin(A + B) − sin(A − B)] 10

8. cos A cos B Use
1

2
[cos(A + B) + cos(A − B)] 11

9. sin A sin B Use −
1

2
[cos(A + B) − cos(A − B)] 12

10.
1

√
a2 − x2

sin−1 x

a
+ c 13, 14

11.
√

a2 − x2
a2

2
sin−1 x

a
+

x

2

√
a2 − x2 + c 15, 16















Use x = a sin θ

substitution

12.
1

a2 + x2

1

a
tan−1 x

a
+ c Use x = a tan θ substitution 17–19

Since cot2 θ + 1 = cosec2 θ, then

cot2 θ = cosec2 θ − 1 and cot 2 2θ = cosec2 2θ − 1

Hence

∫ π
3

π
6

1

2
cot2 2θ dθ

=
1

2

∫ π
3

π
6

(cosec2 2θ − 1) dθ =
1

2

[

−cot2θ

2
− θ

]

π
3

π
6

=
1

2













− cot 2
(π

3

)

2
−

π

3






−







− cot 2
(π

6

)

2
−

π

6













=
1

2
[(−−0.2887 − 1.0472) − (−0.2887 − 0.5236)]

= 0.0269
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Now try the following exercise

Exercise 176 Further problems on

integration of sin2x,

cos2x , tan2x and cot2x

In Problems 1 to 4, integrate with respect to the

variable.

1. sin2 2x

[

1

2

(

x −
sin 4x

4

)

+ c

]

2. 3 cos2 t

[

3

2

(

t +
sin 2t

2

)

+ c

]

3. 5 tan2 3θ

[

5

(

1

3
tan 3θ − θ

)

+ c

]

4. 2 cot2 2t [−(cot 2t + 2t) + c]

In Problems 5 to 8, evaluate the definite integrals,

correct to 4 significant figures.

5.

∫ π/3

0

3 sin2 3x dx
[π

2
or 1.571

]

6.

∫ π/4

0

cos2 4x dx
[π

8
or 0.3927

]

7.

∫ 0.5

0

2 tan2 2t dt [0.5574]

8.

∫ π/3

π/6

cot2 θ dθ [0.6311]

50.3 Worked problems on powers of
sines and cosines

Problem 5. Determine:

∫

sin5 θ dθ

Since cos2 θ + sin2 θ = 1 then sin2 θ = (1 − cos2 θ).

Hence

∫

sin5 θ dθ

=
∫

sin θ(sin2θ)2 dθ =
∫

sin θ(1 − cos2 θ)2dθ

=
∫

sin θ(1 − 2 cos2 θ + cos4 θ) dθ

=
∫

(sinθ − 2 sin θ cos2 θ + sin θ cos4 θ)dθ

= −cos θ +
2 cos3

θ

3
−

cos5
θ

5
+ c

[Whenever a power of a cosine is multiplied by a sine of

power 1, or vice-versa, the integral may be determined

by inspection as shown.

In general,

∫

cosn θ sin θ dθ =
− cosn+1 θ

(n + 1)
+ c

and

∫

sinn θ cos θ dθ =
sinn+1 θ

(n + 1)
+ c

Alternatively, an algebraic substitution may be used as

shown in Problem 6, chapter 49, page 443].

Problem 6. Evaluate:

∫ π
2

0

sin2 x cos3 x dx

∫ π
2

0

sin2 x cos3 x dx =
∫ π

2

0

sin2 x cos2 x cos x dx

=
∫ π

2

0

(sin2x)(1 − sin2 x)( cos x) dx

=
∫ π

2

0

(sin2x cos x − sin4 x cos x) dx

=

[

sin3 x

3
−

sin5 x

5

]
π
2

0

=







(

sin
π

2

)3

3
−

(

sin
π

2

)5

5






− [0 − 0]

=
1

3
−

1

5
=

2

15
or 0.1333

Problem 7. Evaluate:

∫ π
4

0

4 cos4 θ dθ, correct to

4 significant figures

∫ π
4

0

4 cos4 θ dθ = 4

∫ π
4

0

( cos2 θ)2dθ

= 4

∫ π
4

0

[

1

2
(1 + cos 2θ)

]2

dθ

=
∫ π

4

0

(1 + 2 cos 2θ + cos2 2θ) dθ

=
∫ π

4

0

[

1 + 2 cos 2θ +
1

2
(1 + cos 4θ)

]

dθ
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=
∫ π

4

0

[

3

2
+ 2 cos 2θ +

1

2
cos 4θ

]

dθ

=
[

3θ

2
+ sin 2θ +

sin 4θ

8

]
π
4

0

=
[

3

2

(π

4

)

+ sin
2π

4
+

sin 4(π/4)

8

]

− [0]

=
3π

8
+ 1

= 2.178, correct to 4 significant figures.

Problem 8. Find:

∫

sin2 t cos4 t dt

∫

sin2 t cos4 t dt =
∫

sin2 t( cos2 t)2 dt

=
∫ (

1 − cos 2t

2

) (

1 + cos 2t

2

)2

dt

=
1

8

∫

(1 − cos 2t)(1 + 2 cos 2t + cos2 2t) dt

=
1

8

∫

(1 + 2 cos 2t + cos2 2t − cos 2t

− 2 cos2 2t − cos3 2t) dt

=
1

8

∫

(1 + cos 2t − cos2 2t − cos3 2t) dt

=
1

8

∫ [

1 + cos 2t −
(

1 + cos 4t

2

)

− cos 2t(1 − sin2 2t)

]

dt

=
1

8

∫ (

1

2
−

cos 4t

2
+ cos 2t sin2 2t

)

dt

=
1

8

(

t

2
−

sin 4t

8
+

sin3 2t

6

)

+ c

Now try the following exercise

Exercise 177 Further problems on

integration of powers

of sines and cosines

Integrate the following with respect to the variable:

1. sin3 θ

[

−cos θ +
cos3 θ

3
+ c

]

2. 2 cos3 2x

[

sin 2x −
sin3 2x

3
+ c

]

3. 2 sin3 t cos2 t

[

−2

3
cos3 t +

2

5
cos5 t + c

]

4. sin3 x cos4 x

[

−cos5x

5
+

cos7 x

7
+ c

]

5. 2 sin4 2θ
[

3θ

4
−

1

4
sin 4θ +

1

32
sin 8θ + c

]

6. sin2 t cos2 t

[

t

8
−

1

32
sin 4t + c

]

50.4 Worked problems on
integration of products of sines
and cosines

Problem 9. Determine:

∫

sin 3t cos 2t dt

∫

sin 3t cos 2t dt

=
∫

1

2
[sin(3t + 2t) + sin(3t − 2t)] dt,

from 6 of Table 50.1, which follows from Section 27.4,

page 238,

=
1

2

∫

(sin5t + sin t) dt

=
1

2

(

−cos 5t

5
− cos t

)

+ c

Problem 10. Find:

∫

1

3
cos 5x sin 2x dx

∫

1

3
cos 5x sin 2x dx

=
1

3

∫

1

2
[sin(5x + 2x) − sin(5x − 2x)] dx,

from 7 of Table 50.1

=
1

6

∫

(sin7x − sin 3x) dx

=
1

6

(

−cos 7x

7
+

cos 3x

3

)

+ c
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Problem 11. Evaluate:

∫ 1

0

2 cos 6θ cos θ dθ,

correct to 4 decimal places

∫ 1

0

2 cos 6θ cos θ dθ

= 2

∫ 1

0

1

2
[cos(6θ + θ) + cos(6θ − θ)] dθ,

from 8 of Table 50.1

=
∫ 1

0

(cos7θ + cos 5θ) dθ =
[

sin 7θ

7
+

sin 5θ

5

]1

0

=
(

sin 7

7
+

sin 5

5

)

−
(

sin 0

7
+

sin 0

5

)

‘sin 7’ means ‘the sine of 7 radians’ (≡ 401.07◦) and

sin 5 ≡ 286.48◦.

Hence

∫ 1

0

2 cos 6θ cos θ dθ

= (0.09386 + −0.19178) − (0)

= −0.0979, correct to 4 decimal places

Problem 12. Find: 3

∫

sin 5x sin 3x dx

3

∫

sin 5x sin 3x dx

= 3

∫

−
1

2
[cos(5x + 3x) − cos(5x − 3x)] dx,

from 9 of Table 50.1

= −
3

2

∫

(cos8x − cos 2x) dx

= −
3

2

(

sin 8x

8
−

sin 2x

2

)

+ c or

3

16
(4 sin 2x − sin 8x) + c

Now try the following exercise

Exercise 178 Further problems on

integration of products

of sines and cosines

In Problems 1 to 4, integrate with respect to

the variable.

1. sin 5t cos 2t

[

−
1

2

(

cos 7t

7
+

cos 3t

3

)

+ c

]

2. 2 sin 3x sin x
[

sin 2x

2
−

sin 4x

4
+ c

]

3. 3 cos 6x cos x
[

3

2

(

sin 7x

7
+

sin 5x

5

)

+ c

]

4.
1

2
cos 4θ sin 2θ

[

1

4

(

cos 2θ

2
−

cos 6θ

6

)

+ c

]

In Problems 5 to 8, evaluate the definite integrals.

5.

∫ π/2

0

cos 4x cos 3x dx

[

3

7
or 0.4286

]

6.

∫ 1

0

2 sin 7t cos 3t dt [0.5973]

7. −4

∫ π/3

0

sin 5θ sin 2θ dθ [0.2474]

8.

∫ 2

1

3 cos 8t sin 3t dt [−0.1999]

50.5 Worked problems on
integration using the sin θ

substitution

Problem 13. Determine:

∫

1
√

a2 − x2
dx

Let x = a sin θ, then
dx

dθ
= a cos θ and dx = a cos θ dθ.

Hence

∫

1
√

a2 − x2
dx

=
∫

1
√

a2 − a2 sin2 θ
a cos θ dθ

=
∫

a cos θ dθ
√

a2(1 − sin2 θ)

=
∫

a cos θ dθ
√

a2 cos2 θ
, since sin2 θ + cos2 θ = 1

=
∫

a cos θ dθ

a cos θ
=

∫

dθ = θ + c

Since x = a sin θ, then sin θ =
x

a
and θ = sin−1 x

a

Hence

∫

1
√

a2 − x2
dx = sin−1 x

a
+ c
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Problem 14. Evaluate

∫ 3

0

1
√

9 − x2
dx

From Problem 13,

∫ 3

0

1
√

9 − x2
dx

=
[

sin−1 x

3

]3

0
since a = 3

= (sin−11 − sin−1 0) =
π

2
or 1.5708

Problem 15. Find:

∫

√

a2 − x2 dx

Let x = a sin θ then
dx

dθ
= a cos θ and dx = a cos θ dθ

Hence

∫

√

a2 − x2dx

=
∫

√

a2 − a2 sin2 θ (a cos θ dθ)

=
∫

√

a2(1 − sin2 θ) (a cos θ dθ)

=
∫ √

a2 cos2 θ (a cos θ dθ)

=
∫

(a cos θ) (a cos θ dθ)

= a2

∫

cos2 θ dθ = a2

∫ (

1 + cos 2θ

2

)

dθ

(since cos 2θ = 2 cos2 θ − 1)

=
a2

2

(

θ +
sin 2θ

2

)

+ c

=
a2

2

(

θ +
2 sin θ cos θ

2

)

+ c

since from Chapter 27, sin 2θ = 2 sin θ cos θ

=
a2

2
[θ + sin θ cos θ] + c

Since x = a sin θ, then sin θ =
x

a
and θ = sin−1 x

a
Also, cos2 θ + sin2 θ = 1, from which,

cos θ =
√

1 − sin2 θ =
√

1 −
( x

a

)2

=

√

a2 − x2

a2
=

√
a2 − x2

a

Thus

∫

√

a2 − x2 dx =
a2

2
[θ + sin θ cos θ]

=
a2

2

[

sin−1 x

a
+

( x

a

)

√
a2 − x2

a

]

+ c

=
a2

2
sin−1 x

a
+

x

2

√

a2 − x2 + c

Problem 16. Evaluate:

∫ 4

0

√

16 − x2 dx

From Problem 15,

∫ 4

0

√

16 − x2 dx

=
[

16

2
sin−1 x

4
+

x

2

√

16 − x2

]4

0

=
[

8 sin−1 1 + 2
√

0
]

−
[

8 sin−1 0 + 0
]

= 8 sin−1 1 = 8
(π

2

)

= 4π or 12.57

Now try the following exercise

Exercise 179 Further problems on

integration using the

sine θ substitution

1. Determine:

∫

5
√

4 − t2
dt

[

5 sin−1 t

2
+ c

]

2. Determine:

∫

3
√

9 − x2
dx

[

3 sin−1 x

3
+ c

]

3. Determine:

∫

√

4 − x2 dx
[

2 sin−1 x

2
+

x

2

√

4 − x2 + c
]

4. Determine:

∫

√

16 − 9t2 dt
[

8

3
sin−1 3t

4
+

t

2

√

16 − 9t2 + c

]
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5. Evaluate:

∫ 4

0

1
√

16 − x2
dx

[π

2
or 1.571

]

6. Evaluate:

∫ 1

0

√

9 − 4x2 dx [2.760]

50.6 Worked problems on
integration using the tan θ

substitution

Problem 17. Determine:

∫

1

(a2 + x2)
dx

Let x = a tan θ then
dx

dθ
= a sec2 θ and dx = a sec2 θ dθ

Hence

∫

1

(a2 + x2)
dx

=
∫

1

(a2 + a2 tan2 θ)
(a sec2 θ dθ)

=
∫

a sec2 θ dθ

a2(1 + tan2 θ)

=
∫

a sec2 θ dθ

a2 sec2 θ
since 1 + tan2 θ = sec2 θ

=
∫

1

a
dθ =

1

a
(θ) + c

Since x = a tan θ, θ = tan−1 x

a

Hence

∫

1

(a2 + x2)
dx =

1

a
tan−1 x

a
+ c

Problem 18. Evaluate:

∫ 2

0

1

(4 + x2)
dx

From Problem 17,

∫ 2

0

1

(4 + x2)
dx

=
1

2

[

tan−1 x

2

]2

0
since a = 2

=
1

2
( tan−1 1 − tan−1 0) =

1

2

(π

4
− 0

)

=
π

8
or 0.3927

Problem 19. Evaluate:

∫ 1

0

5

(3 + 2x2)
dx, correct

to 4 decimal places

∫ 1

0

5

(3 + 2x2)
dx =

∫ 1

0

5

2[(3/2) + x2]
dx

=
5

2

∫ 1

0

1

[
√

3/2]2 + x2
dx

=
5

2

[

1
√

3/2
tan−1 x

√
3/2

]1

0

=
5

2

√

2

3

[

tan−1

√

2

3
− tan−1 0

]

= (2.0412)[0.6847 − 0]

= 1.3976, correct to 4 decimal places.

Now try the following exercise

Exercise 180 Further problems on

integration using the

tan θ substitution

1. Determine:

∫

3

4 + t2
dt

[

3

2
tan−1 x

2
+ c

]

2. Determine:

∫

5

16 + 9θ2
dθ
[

5

12
tan−1 3θ

4
+ c

]

3. Evaluate:

∫ 1

0

3

1 + t2
dt [2.356]

4. Evaluate:

∫ 3

0

5

4 + x2
dx [2.457]
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Revision Test 14

This Revision test covers the material contained in Chapters 48 to 50. The marks for each question are shown in

brackets at the end of each question.

1. Determine:

(a)

∫

3
√

t5 dt

(b)

∫

2
3
√

x2
dx

(c)

∫

(2 + θ)2dθ (9)

2. Evaluate the following integrals, each correct to 4

significant figures:

(a)

∫ π/3

0

3 sin 2t dt

(b)

∫ 2

1

(

2

x2
+

1

x
+

3

4

)

dx (10)

3. Determine the following integrals:

(a)

∫

5(6t + 5)7dt

(b)

∫

3 ln x

x
dx

(c)

∫

2
√

(2θ − 1)
dθ (9)

4. Evaluate the following definite integrals:

(a)

∫ π/2

0

2 sin
(

2t +
π

3

)

dt

(b)

∫ 1

0

3xe4x2−3 dx (10)

5. Determine the following integrals:

(a)

∫

cos3 x sin2 x dx

(b)

∫

2
√

9 − 4x2
dx (8)

6. Evaluate the following definite integrals, correct to

4 significant figures:

(a)

∫ π/2

0

3 sin2 t dt

(b)

∫ π/3

0

3 cos 5θ sin 3θ dθ

(c)

∫ 2

0

5

4 + x2
dx (14)



Chapter 51

Integration using partial
fractions

51.1 Introduction

The process of expressing a fraction in terms of sim-

pler fractions—called partial fractions—is discussed

in Chapter 7, with the forms of partial fractions used

being summarised in Table 7.1, page 54.

Certain functions have to be resolved into partial frac-

tions before they an be integrated, as demonstrated in

the following worked problems.

51.2 Worked problems on
integration using partial
fractions with linear factors

Problem 1. Determine:

∫

11 − 3x

x2 + 2x − 3
dx

As shown in Problem 1, page 54:

11 − 3x

x2 + 2x − 3
≡

2

(x − 1)
−

5

(x + 3)

Hence

∫

11 − 3x

x2 + 2x − 3
dx

=
∫ {

2

(x − 1)
−

5

(x + 3)

}

dx

= 2 ln(x − 1) − 5 ln(x + 3) + c

(by algebraic substitutions—see chapter 49)

or ln

{

(x − 1)2

(x + 3)5

}

+ c by the laws of logarithms

Problem 2. Find:

∫

2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
dx

It was shown in Problem 2, page 55:

2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
≡

4

(x + 1)
−

3

(x − 2)

+
1

(x + 3)

Hence

∫

2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
dx

≡
∫ {

4

(x + 1)
−

3

(x − 2)
+

1

(x + 3)

}

dx

= 4 ln(x + 1) − 3 ln(x − 2) + ln(x + 3) + c

or ln

{

(x + 1)4(x + 3)

(x − 2)3

}

+ c

Problem 3. Determine:

∫

x2 + 1

x2 − 3x + 2
dx

By dividing out (since the numerator and denomina-

tor are of the same degree) and resolving into partial

fractions it was shown in Problem 3, page 55:

x2 + 1

x2 − 3x + 2
≡ 1 −

2

(x − 1)
+

5

(x − 2)

Hence

∫

x2 + 1

x2 − 3x + 2
dx

≡
∫ {

1 −
2

(x − 1)
+

5

(x − 2)

}

dx
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= x − 2 ln(x − 1) + 5 ln(x − 2) + c

or x + ln

{

(x − 2)5

(x − 1)2

}

+ c

Problem 4. Evaluate:
∫ 3

2

x3 − 2x2 − 4x − 4

x2 + x − 2
dx, correct to 4

significant figures

By dividing out and resolving into partial fractions, it

was shown in Problem 4, page 56:

x3 − 2x2 − 4x − 4

x2 + x − 2
≡ x − 3 +

4

(x + 2)
−

3

(x − 1)

Hence

∫ 3

2

x3 − 2x2 − 4x − 4

x2 + x − 2
dx

≡
∫ 3

2

{

x − 3 +
4

(x + 2)
−

3

(x − 1)

}

dx

=
[

x2

2
− 3x + 4 ln(x + 2) − 3 ln(x − 1)

]3

2

=
(

9

2
− 9 + 4 ln 5 − 3 ln 2

)

− (2 − 6 + 4 ln 4 − 3 ln 1)

= −1.687, correct to 4 significant figures

Now try the following exercise

Exercise 181 Further problems on

integration using partial

fractions with linear factors

In Problems 1 to 5, integrate with respect to x

1.

∫

12

(x2 − 9)
dx





2 ln(x − 3) − 2 ln(x + 3) + c

or ln

{

x − 3

x + 3

}2

+ c





2.

∫

4(x − 4)

(x2 − 2x − 3)
dx





5 ln(x + 1) − ln(x − 3) + c

or ln

{

(x + 1)5

(x − 3)

}

+ c





3.

∫

3(2x2 − 8x − 1)

(x + 4)(x + 1)(2x − 1)
dx





7 ln(x + 4) − 3 ln(x + 1) − ln(2x − 1) + c

or ln

{

(x + 4)7

(x + 1)3(2x − 1)

}

+ c





4.

∫

x2 + 9x + 8

x2 + x − 6
dx

[

x + 2 ln(x + 3) + 6 ln(x − 2) + c

or x + ln{(x + 3)2(x − 2)6} + c

]

5.

∫

3x3 − 2x2 − 16x + 20

(x − 2)(x + 2)
dx





3x2

2
− 2x + ln(x − 2)

−5 ln(x + 2) + c





In Problems 6 and 7, evaluate the definite integrals

correct to 4 significant figures.

6.

∫ 4

3

x2 − 3x + 6

x(x − 2)(x − 1)
dx [0.6275]

7.

∫ 6

4

x2 − x − 14

x2 − 2x − 3
dx [0.8122]

51.3 Worked problems on
integration using partial
fractions with repeated linear
factors

Problem 5. Determine:

∫

2x + 3

(x − 2)2
dx

It was shown in Problem 5, page 57:

2x + 3

(x − 2)2
≡

2

(x − 2)
+

7

(x − 2)2

Thus

∫

2x + 3

(x − 2)2
dx

≡
∫ {

2

(x − 2)
+

7

(x − 2)2

}

dx

= 2 ln(x − 2) −
7

(x − 2)
+ c
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∫

7

(x − 2)2
dx is determined using the algebraic

substitution u = (x − 2), see Chapter 49





Problem 6. Find:

∫

5x2 − 2x − 19

(x + 3)(x − 1)2
dx

It was shown in Problem 6, page 57:

5x2 − 2x − 19

(x + 3)(x − 1)2
≡

2

(x + 3)
+

3

(x − 1)
−

4

(x − 1)2

Hence

∫

5x2 − 2x − 19

(x + 3)(x − 1)2
dx

≡
∫ {

2

(x + 3)
+

3

(x − 1)
−

4

(x − 1)2

}

dx

= 2 ln(x + 3) + 3 ln(x − 1) +
4

(x − 1)
+ c

or ln(x + 3)2 (x − 1)3
+

4

(x − 1)
+ c

Problem 7. Evaluate:
∫ 1

−2

3x2 + 16x + 15

(x + 3)3
dx, correct to

4 significant figures

It was shown in Problem 7, page 58:

3x2 + 16x + 15

(x + 3)3
≡

3

(x + 3)
−

2

(x + 3)2
−

6

(x + 3)3

Hence

∫

3x2 + 16x + 15

(x + 3)3
dx

≡
∫ 1

−2

{

3

(x + 3)
−

2

(x + 3)2
−

6

(x + 3)3

}

dx

=
[

3 ln(x + 3) +
2

(x + 3)
+

3

(x + 3)2

]1

−2

=
(

3 ln 4 +
2

4
+

3

16

)

−
(

3 ln 1 +
2

1
+

3

1

)

= −0.1536, correct to 4 significant figures.

Now try the following exercise

Exercise 182 Further problems on

integration using partial

fractions with repeated linear

factors

In Problems 1 and 2, integrate with respect to x.

1.

∫

4x − 3

(x + 1)2
dx

[

4 ln(x + 1) +
7

(x + 1)
+ c

]

2.

∫

5x2 − 30x + 44

(x − 2)3
dx

[

5 ln(x − 2) +
10

(x − 2)
−

2

(x − 2)2
+ c

]

In Problems 3 and 4, evaluate the definite integrals

correct to 4 significant figures.

3.

∫ 2

1

x2 + 7x + 3

x2(x + 3)
dx [1.663]

4.

∫ 7

6

18 + 21x − x2

(x − 5)(x + 2)2
dx [1.089]

51.4 Worked problems on
integration using partial
fractions with quadratic factors

Problem 8. Find:

∫

3 + 6x + 4x2 − 2x3

x2(x2 + 3)
dx

It was shown in Problem 9, page 59:

3 + 6x + 4x2 − 2x2

x2(x2 + 3)
≡

2

x
+

1

x2
+

3 − 4x

(x2 + 3)

Thus

∫

3 + 6x + 4x2 − 2x3

x2(x2 + 3)
dx

≡
∫ (

2

x
+

1

x2
+

3 − 4x

(x2 + 3)

)

dx

=
∫ {

2

x
+

1

x2
+

3

(x2 + 3)
−

4x

(x2 + 3)

}

dx
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∫

3

(x2 + 3)
dx = 3

∫

1

x2 + (
√

3)2
dx

=
3

√
3

tan−1 x
√

3

from 12, Table 50.1, page 448.
∫

4x

x2 + 3
dx is determined using the algebraic substitu-

tions u = (x2 + 3).

Hence

∫ {

2

x
+

1

x2
+

3

(x2 + 3)
−

4x

(x2 + 3)

}

dx

= 2 ln x −
1

x
+

3
√

3
tan−1 x

√
3

− 2 ln(x2 + 3) + c

= ln

(

x

x2 + 3

)2

−
1

x
+

√
3 tan−1 x

√
3

+ c

Problem 9. Determine:

∫

1

(x2 − a2)
dx

Let
1

(x2 − a2)
≡

A

(x − a)
+

B

(x + a)

≡
A(x + a) + B(x − a)

(x + a)(x − a)

Equating the numerators gives:

1 ≡ A(x + a) + B(x − a)

Let x = a, then A =
1

2a

and let x = −a,

then B = −
1

2a

Hence

∫

1

(x2 − a2)
dx ≡

∫

1

2a

[

1

(x − a)
−

1

(x + a)

]

dx

=
1

2a
[ ln(x − a) − ln(x + a)] + c

=
1

2a
ln

(

x − a

x + a

)

+ c

Problem 10. Evaluate:

∫ 4

3

3

(x2 − 4)
dx, correct to

3 significant figures

From Problem 9,

∫ 4

3

3

(x2 − 4)
dx = 3

[

1

2(2)
ln

(

x − 2

x + 2

)]4

3

=
3

4

[

ln
2

6
− ln

1

5

]

=
3

4
ln

5

3
= 0.383, correct to 3

significant figures.

Problem 11. Determine:

∫

1

(a2 − x2)
dx

Using partial fractions, let

1

(a2 − x2)
≡

1

(a − x)(a + x)
≡

A

(a − x)
+

B

(a + x)

≡
A(a + x) + B(a − x)

(a − x)(a + x)

Then 1 ≡ A(a + x) + B(a − x)

Let x = a then A =
1

2a
. Let x = −a then B =

1

2a

Hence

∫

1

(a2 − x2)
dx

=
∫

1

2a

[

1

(a − x)
+

1

(a + x)

]

dx

=
1

2a
[− ln(a − x) + ln(a + x)] + c

=
1

2a
ln

(

a + x

a − x

)

+ c

Problem 12. Evaluate:

∫ 2

0

5

(9 − x2)
dx, correct to

4 decimal places

From Problem 11,

∫ 2

0

5

(9 − x2)
dx = 5

[

1

2(3)
ln

(

3 + x

3 − x

)]2

0

=
5

6

[

ln
5

1
− ln 1

]

= 1.3412,

correct to 4 decimal places
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Now try the following exercise

Exercise 183 Further problems on

integration using partial

fractions with quadratic

factors

1. Determine

∫

x2 − x − 13

(x2 + 7)(x − 2)
dx





ln(x2 + 7) +
3

√
7

tan−1 x
√

7
− ln(x − 2) + c





In Problems 2 to 4, evaluate the definite integrals

correct to 4 significant figures.

2.

∫ 6

5

6x − 5

(x − 4)(x2 + 3)
dx [0.5880]

3.

∫ 2

1

4

(16 − x2)
dx [0.2939]

4.

∫ 5

4

2

(x2 − 9)
dx [0.1865]



Chapter 52

The t = tan θ
2

substitution

52.1 Introduction

Integrals of the form

∫

1

a cos θ + b sin θ + c
dθ, where

a, b and c are constants, may be determined by using the

substitution t = tan
θ

2
. The reason is explained below.

If angle A in the right-angled triangle ABC shown in

Fig. 52.1 is made equal to
θ

2
then, since

tangent =
opposite

adjacent
, if BC = t and AB = 1, then

tan
θ

2
= t.

By Pythagoras’ theorem, AC =
√

1 + t2

C

BA
1

2
q

1 t2

t

Figure 52.1

Therefore sin
θ

2
=

t
√

1 + t2
and cos

θ

2
=

1
√

1 + t2

Since sin 2x = 2 sin x cos x (from double angle formu-

lae, Chapter 27), then

sin θ = 2 sin
θ

2
cos

θ

2

= 2

(

t
√

1 + t2

) (

1
√

1 + t2

)

i.e. sin θ =
2t

(1 + t2)
(1)

Since cos 2x = cos2 θ

2
− sin2 θ

2

=
(

1
√

1 + t2

)2

−
(

1
√

1 + t2

)2

i.e. cos θ =
1 − t2

1 + t2
(2)

Also, since t = tan
θ

2

dt

dθ
=

1

2
sec2 θ

2
=

1

2

(

1 + tan2 θ

2

)

from trigonometric

identities,

i.e.
dt

dθ
=

1

2
(1 + t2)

from which, dθ =
2 dt

1 + t2
(3)

Equations (1), (2) and (3) are used to determine integrals

of the form

∫

1

a cos θ + b sin θ + c
dθ where a, b or c

may be zero.

52.2 Worked problems on the

t = tan
θ

2
substitution

Problem 1. Determine:

∫

dθ

sin θ

If t = tan
θ

2
then sin θ =

2t

1 + t2
and dθ =

2 dt

1 + t2
from

equations (1) and (3).

Thus

∫

dθ

sin θ
=

∫

1

sin θ
dθ
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=
∫

1

2t

1 + t2

(

2 dt

1 + t2

)

=
∫

1

t
dt = ln t + c

Hence

∫

dθ

sin θ
= ln

(

tan
θ

2

)

+ c

Problem 2. Determine:

∫

dx

cos x

If t = tan
x

2
then cos x =

1 − t2

1 + t2
and dx =

2 dt

1 + t2
from

equations (2) and (3).

Thus

∫

dx

cos x
=

∫

1

1 − t2

1 + t2

(

2 dt

1 + t2

)

=
∫

2

1 − t2
dt

2

1 − t2
may be resolved into partial fractions (see

Chapter 7).

Let
2

1 − t2
=

2

(1 − t)(1 + t)

=
A

(1 − t)
+

B

(1 + t)

=
A(1 + t) + B(1 − t)

(1 − t)(1 + t)

Hence 2 = A(1 + t) + B(1 − t)

When t = 1, 2 = 2A, from which, A = 1

When t = −1, 2 = 2B, from which, B = 1

Hence

∫

2dt

1 − t2
=

∫

1

(1 − t)
+

1

(1 + t)
dt

= − ln(1 − t) + ln(1 + t) + c

= ln

{

(1 + t)

(1 − t)

}

+ c

Thus

∫

dx

cos x
= ln











1 + tan
x

2

1 − tan
x

2











+ c

Note that since tan
π

4
= 1, the above result may be

written as:

∫

dx

cos x
= ln











tan
π

4
+ tan

π

2

1 − tan
π

4
tan

x

2











+ c

= ln
{

tan
(

π

4
+

x

2

)}

+ c

from compound angles, Chapter 27

Problem 3. Determine:

∫

dx

1 + cos x

If t = tan
x

2
then cos x =

1 − t2

1 + t2
and dx =

2dt

1 + t2
from

equations (2) and (3).

Thus

∫

dx

1 + cos x
=

∫

1

1 + cos x
dx

=
∫

1

1 +
1 − t2

1 + t2

(

2 dt

1 + t2

)

=
∫

1

(1 + t2) + (1 − t2)

1 + t2

(

2 dt

1 + t2

)

=
∫

dt

Hence

∫

dx

1 + cos x
= t + c = tan

x

2
+ c

Problem 4. Determine:

∫

dθ

5 + 4 cos θ

If t = tan
θ

2
then cos θ =

1 − t2

1 + t2
and dx =

2 dt

1 + t2
from

equations (2) and (3).

Thus

∫

dθ

5 + 4 cos θ
=

∫

(

2 dt

1 + t2

)

5 + 4

(

1 − t2

1 + t2

)

=
∫

(

2 dt

1 + t2

)

5(1 + t2) + 4(1 − t2)

1 + t2

= 2

∫

dt

t2 + 9
= 2

∫

dt

t2 + 32

= 2

(

1

3
tan−1 t

3

)

+ c,
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from 12 of Table 50.1, page 448. Hence

∫

dθ

5 + 4 cos θ
=

2

3
tan −1

(

1

3
tan

θ

2

)

+ c

Now try the following exercise

Exercise 184 Further problems on the

t = tan
θ

2
substitution

Integrate the following with respect to the variable:

1.

∫

dθ

1 + sin θ







−2

1 + tan
θ

2

+ c







2.

∫

dx

1 − cos x + sin x





ln











tan
x

2

1 + tan
x

2











+ c







3.

∫

dα

3 + 2 cos α
[

2
√

5
tan−1

(

1
√

5
tan

α

2

)

+ c

]

4.

∫

dx

3 sin x − 4 cos x






1

5
ln











2 tan
x

2
− 1

tan
x

2
+ 2











+ c







52.3 Further worked problems on

the t = tan
θ

2
substitution

Problem 5. Determine:

∫

dx

sin x + cos x

If t = tan
x

2
then sin x =

2t

1 + t2
, cos x =

1 − t2

1 + t2
and

dx =
2 dt

1 + t2
from equations (1), (2) and (3).

Thus

∫

dx

sin x + cos x
=

∫

2 dt

1 + t2

(

2t

1 + t2

)

+
(

1 − t2

1 + t2

)

=
∫

2 dt

1 + t2

2t + 1 − t2

1 + t2

=
∫

2 dt

1 + 2t − t2

=
∫ −2 dt

t2 − 2t − 1
=

∫ −2 dt

(t − 1)2 − 2

=
∫

2 dt

(
√

2)2 − (t − 1)2

= 2

[

1

2
√

2
ln

{√
2 + (t − 1)

√
2 − (t − 1)

}]

+ c

(see problem 11, Chapter 51, page 458),

i.e.

∫

dx

sin x + cos x

=
1

√
2

ln











√
2 − 1 + tan

x

2√
2 + 1 − tan

x

2











+ c

Problem 6. Determine:

∫

dx

7 − 3 sin x + 6 cos x

From equations (1) and (3),

∫

dx

7 − 3 sin x + 6 cos x

=
∫

2 dt

1 + t2

7 − 3

(

2t

1 + t2

)

+ 6

(

1 − t2

1 + t2

)

=
∫

2 dt

1 + t2

7(1 + t2) − 3(2t) + 6(1 − t2)

1 + t2

=
∫

2 dt

7 + 7t2 − 6t + 6 − 6t2

=
∫

2 dt

t2 − 6t + 13
=

∫

2 dt

(t − 3)2 + 22

= 2

[

1

2
tan−1

(

t − 3

2

)]

+ c
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from 12, Table 50.1, page 448. Hence

∫

dx

7 − 3 sin x + 6 cos x

= tan − 1







tan
x

2
− 3

2






+ c

Problem 7. Determine:

∫

dθ

4 cos θ + 3 sin θ

From equations (1) to (3),

∫

dθ

4 cos θ + 3 sin θ

=
∫

2 dt

1 + t2

4

(

1 − t2

1 + t2

)

+ 3

(

2t

1 + t2

)

=
∫

2 dt

4 − 4t2 + 6t
=

∫

dt

2 + 3t − 2t2

= −
1

2

∫

dt

t2 −
3

2
t − 1

= −
1

2

∫

dt
(

t −
3

4

)2

−
25

16

=
1

2

∫

dt
(

5

4

)2

−
(

t −
3

4

)2

=
1

2









1

2

(

5

4

) ln















5

4
+

(

t −
3

4

)

5

4
−

(

t −
3

4

)























+ c

from problem 11, Chapter 51, page 458,

=
1

5
ln











1

2
+ t

2 − t











+ c

Hence

∫

dθ

4 cos θ + 3 sin θ

=
1

5
ln











1

2
+ tan

θ

2

2 − tan
θ

2











+ c

or
1

5
ln











1 + 2 tan
θ

2

4 − 2 tan
θ

2











+ c

Now try the following exercise

Exercise 185 Further problems on the

t = tan
θ

2
substitution

In Problems 1 to 4, integrate with respect to the

variable.

1.

∫

dθ

5 + 4 sin θ






2

3
tan−1







5 tan
θ

2
+ 4

3






+ c







2.

∫

dx

1 + 2 sin x






1
√

3
ln











tan
x

2
+ 2 −

√
3

tan
x

2
+ 2 +

√
3











+ c







3.

∫

dp

3 − 4 sin p + 2 cos p






1
√

11
ln











tan
p

2
− 4 −

√
11

tan
p

2
− 4 +

√
11











+ c







4.

∫

dθ

3 − 4 sin θ






1
√

7
ln











3 tan
θ

2
− 4 −

√
7

3 tan
θ

2
− 4 +

√
7











+ c







5. Show that

∫

dt

1 + 3 cos t
=

1

2
√

2
ln











√
2 + tan

t

2
√

2 − tan
t

2











+ c

6. Show that

∫ π/3

0

3 dθ

cos θ
= 3.95, correct to 3

significant figures.

7. Show that

∫ π/2

0

dθ

2 + cos θ
=

π

3
√

3



Chapter 53

Integration by parts

53.1 Introduction

From the product rule of differentiation:

d

dx
(uv) = v

du

dx
+ u

dv

dx

where u and v are both functions of x.

Rearranging gives: u
dv

dx
=

d

dx
(uv) − v

du

dx

Integrating both sides with respect to x gives:

∫

u
dv

dx
dx =

∫

d

dx
(uv)dx −

∫

v
du

dx
dx

ie

∫

u
dv

dx
dx = uv −

∫

v
du

dx
dx

or

∫

u dv = uv −

∫

v du

This is known as the integration by parts formula and

provides a method of integrating such products of sim-

ple functions as
∫

xexdx,
∫

t sin t dt,
∫

eθ cos θ dθ and
∫

x ln x dx.

Given a product of two terms to integrate the initial

choice is: ‘which part to make equal to u’ and ‘which

part to make equal to dv’. The choice must be such

that the ‘u part’ becomes a constant after successive

differentiation and the ‘dv part’ can be integrated from

standard integrals. Invariable, the following rule holds:

‘If a product to be integrated contains an algebraic term

(such as x, t2 or 3θ) then this term is chosen as the u

part. The one exception to this rule is when a ‘ln x’ term

is involved; in this case ln x is chosen as the ‘u part’.

53.2 Worked problems on
integration by parts

Problem 1. Determine:

∫

x cos x dx

From the integration by parts formula,
∫

u dv = uv −
∫

v du

Let u = x, from which
du

dx
= 1, i.e. du = dx and let

dv = cos x dx, from which v = ∫ cos x dx = sin x.

Expressions for u, du and v are now substituted into

the ‘by parts’ formula as shown below.

i.e.

∫

x cos x dx = x sin x − (−cos x) + c

= x sin x + cos x + c

[This result may be checked by differentiating the right

hand side,

i.e.
d

dx
(x sin x + cos x + c)

= [(x)(cos x) + (sin x)(1)] − sin x + 0

using the product rule

= x cos x, which is the function being integrated
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Problem 2. Find:

∫

3te2tdt

Let u = 3t, from which,
du

dt
= 3, i.e. du = 3 dt and

let dv = e2t dt, from which, v =
∫

e2tdt =
1

2
e2t

Substituting into
∫

u dv = u v −
∫

v du gives:

∫

3te2tdt = (3t)

(

1

2
e2t

)

−
∫ (

1

2
e2t

)

(3 dt)

=
3

2
te2t −

3

2

∫

e2tdt

=
3

2
te2t −

3

2

(

e2t

2

)

+ c

Hence

∫

3te2t dt =
3

2
e2t

(

t −
1

2

)

+ c,

which may be checked by differentiating.

Problem 3. Evaluate

∫ π
2

0

2θ sin θ dθ

Let u = 2θ, from which,
du

dθ
= 2, i.e. du = 2 dθ and let

dv = sin θ dθ, from which,

v =
∫

sin θ dθ = −cos θ

Substituting into

∫

u dv = uv −
∫

v du gives:

∫

2θ sin θ dθ = (2θ)(−cos θ) −
∫

(−cos θ)(2 dθ)

= −2θ cos θ + 2

∫

cos θ dθ

= −2θ cos θ + 2 sin θ + c

Hence

∫ π
2

0

2θ sin θ dθ

=
[

2θ cos θ + 2 sin θ

]
π
2

0

=
[

−2
(π

2

)

cos
π

2
+ 2 sin

π

2

]

− [0 + 2 sin 0]

= (−0 + 2) − (0 + 0) = 2

since cos
π

2
= 0 and sin

π

2
= 1

Problem 4. Evaluate:

∫ 1

0

5xe4xdx, correct to

3 significant figures

Let u = 5x, from which
du

dx
= 5, i.e. du = 5 dx and let

dv = e4x dx, from which, v =
∫

e4xdx =
1

4
e4x

Substituting into
∫

u dv = uv −
∫

v du gives:

∫

5xe4x dx = (5x)

(

e4x

4

)

−
∫ (

e4x

4

)

(5 dx)

=
5

4
xe4x −

5

4

∫

e4x dx

=
5

4
xe4x −

5

4

(

e4x

4

)

+ c

=
5

4
e4x

(

x −
1

4

)

+ c

Hence

∫ 1

0

5xe4x dx

=
[

5

4
e4x

(

x −
1

4

)]1

0

=
[

5

4
e4

(

1 −
1

4

)]

−
[

5

4
e0

(

0 −
1

4

)]

=
(

15

16
e4

)

−
(

−
5

16

)

= 51.186 + 0.313 = 51.499 = 51.5,

correct to 3 significant figures.

Problem 5. Determine:

∫

x2 sin x dx

Let u = x2, from which,
du

dx
= 2x, i.e. du = 2x dx, and

let dv = sin x dx, from which, v =
∫

sin x dx = −cos x

Substituting into

∫

u dv = uv −
∫

v du gives:

∫

x2 sin x dx = (x2)(−cos x) −
∫

(−cos x)(2x dx)

= −x2 cos x + 2

[∫

x cos x dx

]

The integral,
∫

x cos x dx, is not a ‘standard integral’

and it can only be determined by using the integration

by parts formula again.
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From Problem 1,
∫

x cos x dx = x sin x + cos x

Hence

∫

x2 sin x dx

= −x2 cos x + 2{x sin x + cos x} + c

= −x2 cos x + 2x sin x + 2 cos x + c

= (2 − x2)cos x + 2x sin x + c

In general, if the algebraic term of a product is of power

n, then the integration by parts formula is applied n

times.

Now try the following exercise

Exercise 186 Further problems on

integration by parts

Determine the integrals in Problems 1 to 5 using

integration by parts.

1.

∫

xe2xdx

[

e2x

2

(

x −
1

2

)

+ c

]

2.

∫

4x

e3x
dx

[

−
4

3
e−3x

(

x +
1

3

)

+ c

]

3.

∫

x sin x dx [−x cos x + sin x + c]

4.

∫

5θ cos 2θ dθ
[

5

2

(

θ sin 2θ +
1

2
cos 2θ

)

+ c

]

5.

∫

3t2e2tdt

[

3

2
e2t

(

t2 − t +
1

2

)

+ c

]

Evaluate the integrals in Problems 6 to 9, correct

to 4 significant figures.

6.

∫ 2

0

2xex dx [16.78]

7.

∫ π
4

0

x sin 2x dx [0.2500]

8.

∫ π
2

0

t2 cos t dt [0.4674]

9.

∫ 2

1

3x2e
x
2 dx [15.78]

53.3 Further worked problems on
integration by parts

Problem 6. Find:

∫

x ln x dx

The logarithmic function is chosen as the ‘u part’ Thus

when u = ln x, then
du

dx
=

1

x
i.e. du =

dx

x

Letting dv = x dx gives v =
∫

x dx =
x2

2

Substituting into
∫

u dv = uv −
∫

v du gives:

∫

x ln x dx = ( ln x)

(

x2

2

)

−
∫ (

x2

2

)

dx

x

=
x2

2
ln x −

1

2

∫

x dx

=
x2

2
ln x −

1

2

(

x2

2

)

+ c

Hence

∫

x ln x dx =
x2

2

(

ln x −
1

2

)

+ c

or
x2

4
(2 ln x − 1) + c

Problem 7. Determine:
∫

ln x dx

∫

ln x dx is the same as
∫

(1) ln x dx

Let u = ln x, from which,
du

dx
=

1

x
i.e. du =

dx

x
and let

dv = 1 dx, from which, v =
∫

1 dx = x

Substituting into
∫

u dv = uv −
∫

v du gives:

∫

ln x dx = ( ln x)(x) −
∫

x
dx

x

= x ln x −
∫

dx = x ln x − x + c

Hence

∫

ln x dx = x(ln x − 1) + c

Problem 8. Evaluate:

∫ 9

1

√
x ln x dx, correct to

3 significant figures
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Let u = ln x, from which du =
dx

x

and let dv =
√

x dx = x
1
2 dx, from which,

v =
∫

x
1
2 dx =

2

3
x

3
2

Substituting into
∫

u dv = uv −
∫

v du gives:

∫ √
x ln x dx = ( ln x)

(

2

3
x

3
2

)

−
∫ (

2

3
x

3
2

) (

dx

x

)

=
2

3

√
x3 ln x −

2

3

∫

x
1
2 dx

=
2

3

√
x3 ln x −

2

3

(

2

3
x

3
2

)

+ c

=
2

3

√
x3

[

ln x −
2

3

]

+ c

Hence

∫ 9

1

√
x ln x dx =

[

2

3

√
x3

(

ln x −
2

3

)]9

1

=
[

2

3

√
93

(

ln 9 −
2

3

)]

−
[

2

3

√
13

(

ln 1 −
2

3

)]

=
[

18

(

ln 9 −
2

3

)]

−
[

2

3

(

0 −
2

3

)]

= 27.550 + 0.444 = 27.994 = 28.0,

correct to 3 significant figures.

Problem 9. Find:
∫

eax cos bx dx

When integrating a product of an exponential and a sine

or cosine function it is immaterial which part is made

equal to ‘u’.

Let u = eax, from which
du

dx
= aeax, i.e. du = aeax dx

and let dv = cos bx dx, from which,

v =
∫

cos bx dx =
1

b
sin bx

Substituting into
∫

u dv = uv −
∫

v du gives:

∫

eax cos bx dx

= (eax)

(

1

b
sin bx

)

−
∫ (

1

b
sin bx

)

(aeaxdx)

=
1

b
eax sin bx −

a

b

[∫

eax sin bx dx

]

(1)

∫

eax sin bx dx is now determined separately using inte-

gration by parts again:

Let u = eax then du = aeax dx, and let dv = sin bx dx,

from which

v =
∫

sin bx dx = −
1

b
cos bx

Substituting into the integration by parts formula gives:

∫

eax sin bx dx = (eax)

(

−
1

b
cos bx

)

−
∫ (

−
1

b
cos bx

)

(aeax dx)

= −
1

b
eax cos bx

+
a

b

∫

eax cos bx dx

Substituting this result into equation (1) gives:

∫

eax cos bx dx =
1

b
eax sin bx −

a

b

[

−
1

b
eax cos bx

+
a

b

∫

eax cos bx dx

]

=
1

b
eax sin bx +

a

b2
eax cos bx

−
a2

b2

∫

eax cos bx dx

The integral on the far right of this equation is the same

as the integral on the left hand side and thus they may

be combined.

∫

eax cos bx dx+
a2

b2

∫

eax cos bx dx

=
1

b
eax sin bx +

a

b2
eax cos bx

i.e.

(

1 +
a2

b2

) ∫

eax cos bx dx

=
1

b
eax sin bx +

a

b2
eax cos bx

i.e.

(

b2 + a2

b2

) ∫

eax cos bx dx

=
eax

b2
(b sin bx + a cos bx)
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Hence

∫

eax cos bx dx

=
(

b2

b2 + a2

) (

eax

b2

)

(b sin bx + a cos bx)

=
eax

a2 + b2
(b sin bx + a cos bx) + c

Using a similar method to above, that is, integrating by

parts twice, the following result may be proved:
∫

eax sin bx dx

=
eax

a2 + b2
(a sin bx − b cos bx) + c (2)

Problem 10. Evaluate

∫ π
4

0

et sin 2t dt, correct to

4 decimal places

Comparing
∫

et sin 2t dt with
∫

eax sin bx dx shows that

x = t, a = 1 and b = 2.

Hence, substituting into equation (2) gives:

∫ π
4

0

et sin 2t dt

=
[

et

12 + 22
(1 sin 2t − 2 cos 2t)

]
π
4

0

=

[

e
π
4

5

(

sin 2
(π

4

)

− 2 cos 2
(π

4

))

]

−
[

e0

5
(sin 0 − 2 cos 0)

]

=

[

e
π
4

5
(1 − 0)

]

−
[

1

5
(0 − 2)

]

=
e

π
4

5
+

2

5

= 0.8387, correct to 4 decimal places

Now try the following exercise

Exercise 187 Further problems on

integration by parts

Determine the integrals in Problems 1 to 5 using

integration by parts.

1.

∫

2x2 ln x dx

[

2

3
x3

(

ln x −
1

3

)

+ c

]

2.

∫

2 ln 3x dx [2x(ln 3x − 1) + c]

3.

∫

x2 sin 3x dx
[

cos 3x

27
(2 − 9x2) +

2

9
x sin 3x + c

]

4.

∫

2e5x cos 2x dx
[

2

29
e5x(2 sin 2x + 5 cos 2x) + c

]

5.

∫

2θ sec2 θ dθ [2[θ tan θ − ln(sec θ)] + c]

Evaluate the integrals in Problems 6 to 9, correct

to 4 significant figures.

6.

∫ 2

1

x ln x dx [0.6363]

7.

∫ 1

0

2e3x sin 2x dx [11.31]

8.

∫ π
2

0

et cos 3t dt [−1.543]

9.

∫ 4

1

√
x3 ln x dx [12.78]

10. In determining a Fourier series to represent

f (x) = x in the range −π to π, Fourier coeffi-

cients are given by:

an =
1

π

∫ π

−π

x cos nx dx

and bn =
1

π

∫ π

−π

x sin nx dx

where n is a positive integer. Show by

using integration by parts that an = 0 and

bn = −
2

n
cos nπ

11. The equations:

C =
∫ 1

0

e−0.4θ cos 1.2θ dθ

and S =
∫ 1

0

e−0.4θ sin 1.2θ dθ

are involved in the study of damped oscilla-

tions. Determine the values of C and S.

[C = 0.66, S = 0.41]



Chapter 54

Numerical integration

54.1 Introduction

Even with advanced methods of integration there are

many mathematical functions which cannot be inte-

grated by analytical methods and thus approximate

methods have then to be used. Approximate methods of

definite integrals may be determined by what is termed

numerical integration.

It may be shown that determining the value of a defi-

nite integral is, in fact, finding the area between a curve,

the horizontal axis and the specified ordinates. Three

methods of finding approximate areas under curves are

the trapezoidal rule, the mid-ordinate rule and Simp-

son’s rule, and these rules are used as a basis for

numerical integration.

54.2 The trapezoidal rule

Let a required definite integral be denoted by
∫ b

a
y dx

and be represented by the area under the graph of

y = f (x) between the limits x = a and x = b as shown

in Fig. 54.1.

Let the range of integration be divided into n

equal intervals each of width d, such that nd = b − a,

i.e. d =
b − a

n
The ordinates are labelled y1, y2, y3, . . . , yn+1 as

shown.

An approximation to the area under the curve may

be determined by joining the tops of the ordinates by

straight lines. Each interval is thus a trapezium, and

since the area of a trapezium is given by:

area =
1

2
(sum of parallel sides) (perpendicular

distance between them)

y

0

y ! f (x)

x ! bx ! a x

y1 y2 y3 y4 yn 1

ddd

Figure 54.1

then
∫ b

a

y dx ≈
1

2
( y1 + y2)d +

1

2
( y2 + y3)d

+
1

2
( y3 + y4)d + · · · +

1

2
( yn + yn+1)d

≈ d

[

1

2
y1 + y2 + y3 + y4 + · · · + yn +

1

2
yn+1

]

i.e. the trapezoidal rule states:

∫ b

a

y dx ≈

(

width of

interval

)







1

2

(

first + last

ordinate

)

+





sum of

remaining

ordinates











(1)

Problem 1. (a) Use integration to evaluate,

correct to 3 decimal places,

∫ 3

1

2
√

x
dx

(b) Use the trapezoidal rule with 4 intervals to

evaluate the integral in part (a), correct to

3 decimal places
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(a)

∫ 3

1

2
√

x
dx =

∫ 3

1

2x− 1
2 dx

=







2x
(

− 1
2

)

+1

−
1

2
+ 1







3

1

=
[

4x
1
2

]3

1

= 4 [
√

x]
3
1 = 4 [

√
3 −

√
1]

= 2.928, correct to 3 decimal places.

(b) The range of integration is the difference between

the upper and lower limits, i.e. 3 − 1 = 2. Using

the trapezoidal rule with 4 intervals gives an inter-

val width d =
3 − 1

4
= 0.5 and ordinates situated at

1.0, 1.5, 2.0, 2.5 and 3.0. Corresponding values of
2

√
x

are shown in the table below, each correct to

4 decimal places (which is one more decimal place

than required in the problem).

x
2

√
x

1.0 2.0000

1.5 1.6330

2.0 1.4142

2.5 1.2649

3.0 1.1547

From equation (1):

∫ 3

1

2
√

x
dx ≈ (0.5)

{

1

2
(2.0000 + 1.1547)

+ 1.6330 + 1.4142 + 1.2649

}

= 2.945, correct to 3 decimal places.

This problem demonstrates that even with just 4 inter-

vals a close approximation to the true value of 2.928

(correct to 3 decimal places) is obtained using the

trapezoidal rule.

Problem 2. Use the trapezoidal rule with 8

intervals to evaluate

∫ 3

1

2
√

x
dx, correct to 3

decimal places

With 8 intervals, the width of each is
3 − 1

8
i.e. 0.25

giving ordinates at 1.00, 1.25, 1.50, 1.75, 2.00, 2.25,

2.50, 2.75 and 3.00. Corresponding values of
2

√
x

are

shown in the table below:

x
2

√
x

1.00 2.000

1.25 1.7889

1.50 1.6330

1.75 1.5119

2.00 1.4142

2.25 1.3333

2.50 1.2649

2.75 1.2060

3.00 1.1547

From equation (1):

∫ 3

1

2
√

x
dx ≈ (0.25)

{

1

2
(2.000 + 1.1547) + 1.7889

+ 1.6330 + 1.5119 + 1.4142

+ 1.3333 + 1.2649 + 1.2060

}

= 2.932, correct to 3 decimal places

This problem demonstrates that the greater the num-

ber of intervals chosen (i.e. the smaller the interval

width) the more accurate will be the value of the defi-

nite integral. The exact value is found when the number

of intervals is infinite, which is what the process of

integration is based upon.

Problem 3. Use the trapezoidal rule to evaluate
∫ π/2

0

1

1 + sin x
dx using 6 intervals. Give the

answer correct to 4 significant figures

With 6 intervals, each will have a width of

π

2
− 0

6

i.e.
π

12
rad (or 15◦) and the ordinates occur at 0,
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π

12
,
π

6
,
π

4
,
π

3
,

5π

12
and

π

2
. Corresponding values of

1

1 + sin x
are shown in the table below:

x
1

1 + sin x

0 1.0000

π

12
(or 15◦) 0.79440

π

6
(or 30◦) 0.66667

π

4
(or 45◦) 0.58579

π

3
(or 60◦) 0.53590

5π

12
(or 75◦) 0.50867

π

2
(or 90◦) 0.50000

From equation (1):

∫ π
2

0

1

1 + sin x
dx ≈

( π

12

)

{

1

2
(1.00000 + 0.50000)

+ 0.79440 + 0.66667 + 0.58579

+ 0.53590 + 0.50867

}

= 1.006, correct to 4 significant

figures

Now try the following exercise

Exercise 188 Further problems on the

trapezoidal rule

Evaluate the following definite integrals using the

trapezoidal rule, giving the answers correct to

3 decimal places:

1.

∫ 1

0

2

1 + x2
dx (Use 8 intervals) [1.569]

2.

∫ 3

1

2 ln 3x dx (Use 8 intervals) [6.979]

3.

∫ π/3

0

√
sin θ dθ (Use 6 intervals) [0.672]

4.

∫ 1.4

0

e−x2

dx (Use 7 intervals) [0.843]

54.3 The mid-ordinate rule

Let a required definite integral be denoted again by
∫ b

a
y dx and represented by the area under the graph of

y = f (x) between the limits x = a and x = b, as shown in

Fig. 54.2.

0

y

d

a b x

d d

y1 y2 y3

y ! f (x)

yn

Figure 54.2

With the mid-ordinate rule each interval of width d is

assumed to be replaced by a rectangle of height equal to

the ordinate at the middle point of each interval, shown

as y1, y2, y3, . . . , yn in Fig. 54.2.

Thus

∫ b

a

y dx ≈ dy1 + dy2 + dy3 + · · · + dyn

≈ d(y1 + y2 + y3 + · · · + yn)

i.e. the mid-ordinate rule states:

∫ b

a

y dx ≈

(

width of

interval

) (

sum of

mid-ordinates

)

(2)

Problem 4. Use the mid-ordinate rule with (a) 4

intervals, (b) 8 intervals, to evaluate

∫ 3

1

2
√

x
dx,

correct to 3 decimal places
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(a) With 4 intervals, each will have a width of
3 − 1

4
,

i.e. 0.5. and the ordinates will occur at 1.0, 1.5, 2.0,

2.5 and 3.0. Hence the mid-ordinates y1, y2, y3 and

y4 occur at 1.25, 1.75, 2.25 and 2.75

Corresponding values of
2

√
x

are shown in the

following table:

x
2

√
x

1.25 1.7889

1.75 1.5119

2.25 1.3333

2.75 1.2060

From equation (2):

∫ 3

1

2
√

x
dx ≈ (0.5)[1.7889 + 1.5119

+1.3333 + 1.2060]

= 2.920, correct to 3 decimal places

(b) With 8 intervals, each will have a width of 0.25

and the ordinates will occur at 1.00, 1.25, 1.50,

1.75, . . . and thus mid-ordinates at 1.125, 1.375,

1.625, 1.875. . . . Corresponding values of
2

√
x

are

shown in the following table:

x
2

√
x

1.125 1.8856

1.375 1.7056

1.625 1.5689

1.875 1.4606

2.125 1.3720

2.375 1.2978

2.625 1.2344

2.875 1.1795

From equation (2):

∫ 3

1

2
√

x
dx ≈ (0.25)[1.8856 + 1.7056

+ 1.5689 + 1.4606

+ 1.3720 + 1.2978

+ 1.2344 + 1.1795]

= 2.926, correct to 3 decimal places

As previously, the greater the number of intervals the

nearer the result is to the true value of 2.928, correct to

3 decimal places.

Problem 5. Evaluate

∫ 2.4

0

e−x2/3 dx, correct to 4

significant figures, using the mid-ordinate rule with

6 intervals

With 6 intervals each will have a width of
2.4 − 0

6
, i.e.

0.40 and the ordinates will occur at 0, 0.40, 0.80, 1.20,

1.60, 2.00 and 2.40 and thus mid-ordinates at 0.20, 0.60,

1.00, 1.40, 1.80 and 2.20.

Corresponding values of e−x2/3 are shown in the

following table:

x e−
x2

3

0.20 0.98676

0.60 0.88692

1.00 0.71653

1.40 0.52031

1.80 0.33960

2.20 0.19922

From equation (2):

∫ 2.4

0

e− x2

3 dx ≈ (0.40)[0.98676 + 0.88692

+ 0.71653 + 0.52031

+ 0.33960 + 0.19922]

= 1.460, correct to 4 significant figures.
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Now try the following exercise

Exercise 189 Further problems on the

mid-ordinate rule

Evaluate the following definite integrals using the

mid-ordinate rule, giving the answers correct to

3 decimal places.

1.

∫ 2

0

3

1 + t2
dt (Use 8 intervals) [3.323]

2.

∫ π/2

0

1

1 + sin θ
dθ (Use 6 intervals)

[0.997]

3.

∫ 3

1

ln x

x
dx (Use 10 intervals) [0.605]

4.

∫ π/3

0

√
cos3 x dx (Use 6 intervals)

[0.799]

54.4 Simpson’s rule

The approximation made with the trapezoidal rule is to

join the top of two successive ordinates by a straight

line, i.e. by using a linear approximation of the form

a + bx. With Simpson’s rule, the approximation made

is to join the tops of three successive ordinates by a

parabola, i.e. by using a quadratic approximation of the

form a + bx + cx2.

Figure 54.3 shows a parabola y = a + bx + cx2 with

ordinates y1, y2 and y3 at x = −d, x = 0 and x = d

respectively.

y

0 x

y   a ! bx ! cx2

y1 y2 y3

"d d

Figure 54.3

Thus the width of each of the two intervals is d. The

area enclosed by the parabola, the x-axis and ordinates

x = −d and x = d is given by:

∫ d

−d

(a + bx + cx2) dx =
[

ax +
bx2

2
+

cx3

3

]d

−d

=
(

ad +
bd2

2
+

cd3

3

)

−
(

−ad +
bd2

2
−

cd3

3

)

= 2ad +
2

3
cd3

or
1

3
d(6a + 2cd 2) (3)

Since y = a + bx + cx2

at x = −d, y1 = a − bd + cd2

at x = 0, y2 = a

and at x = d, y3 = a + bd + cd2

Hence y1 + y3 = 2a + 2cd2

and y1 + 4y2 + y3 = 6a + 2cd2 (4)

Thus the area under the parabola between x = −d

and x = d in Fig. 54.3 may be expressed as
1
3
d(y1 + 4y2 + y3), from equation (3) and (4), and the

result is seen to be independent of the position of the

origin.

Let a definite integral be denoted by
∫ b

a
y dx and rep-

resented by the area under the graph of y = f (x) between

the limits x = a and x = b, as shown in Fig. 54.4.

The range of integration, b − a, is divided into an even

number of intervals, say 2n, each of width d.

Since an even number of intervals is specified, an odd

number of ordinates, 2n + 1, exists. Let an approxima-

tion to the curve over the first two intervals be a parabola

of the form y = a + bx + cx2 which passes through the

tops of the three ordinates y1, y2 and y3. Similarly, let an

approximation to the curve over the next two intervals

be the parabola which passes through the tops of the

ordinates y3, y4 and y5, and so on. Then

∫ b

a

y dx ≈
1

3
d( y1 + 4y2 + y3) +

1

3
d( y3 + 4y4 + y5)

+
1

3
d( y2n−1 + 4y2n + y2n+1)
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y

0

y   f (x)

y1 y2 y3 y4 y2n!1

d

a b x

d d

Figure 54.4

≈
1

3
d[( y1 + y2n+1) + 4( y2 + y4 + · · · + y2n)

+2( y3 + y5 + · · · + y2n−1)]

i.e. Simpson’s rule states:

∫ b

a

y dx ≈
1

3

(

width of

interval

)

{(

first + last

ordinate

)

+ 4
(

sum of even

ordinates

)

+ 2
(

sum of remaining

odd ordinates

)}

(5)

Note that Simpson’s rule can only be applied when an

even number of intervals is chosen, i.e. an odd number

of ordinates.

Problem 6. Use Simpson’s rule with (a) 4

intervals, (b) 8 intervals, to evaluate
∫ 3

1

2
√

x
dx, correct to 3 decimal places

(a) With 4 intervals, each will have a width of
3 − 1

4
i.e. 0.5 and the ordinates will occur at 1.0, 1.5, 2.0,

2.5 and 3.0.

The values of the ordinates are as shown in the table

of Problem 1(b), page 470.

Thus, from equation (5):

∫ 3

1

2
√

x
dx ≈

1

3
(0.5)[(2.0000 + 1.1547)

+4(1.6330 + 1.2649)

+2(1.4142)]

=
1

3
(0.5)[3.1547 + 11.5916

+2.8284]

= 2.929, correct to 3 decimal

places.

(b) With 8 intervals, each will have a width of
3 − 1

8
i.e. 0.25 and the ordinates occur at 1.00, 1.25, 1.50,

1.75, …, 3.0.

The values of the ordinates are as shown in the table

in Problem 2, page 470.

Thus, from equation (5):

∫ 3

1

2
√

x
dx ≈

1

3
(0.25)[(2.0000 + 1.1547)

+ 4(1.7889 + 1.5119 + 1.3333

+1.2060) + 2(1.6330

+1.4142 + 1.2649)]

=
1

3
(0.25)[3.1547 + 23.3604

+8.6242]

= 2.928, correct to 3 decimal

places.

It is noted that the latter answer is exactly the same as

that obtained by integration. In general, Simpson’s rule

is regarded as the most accurate of the three approximate

methods used in numerical integration.

Problem 7. Evaluate

∫ π/3

0

√

1 −
1

3
sin2 θ dθ,

correct to 3 decimal places, using Simpson’s rule

with 6 intervals

With 6 intervals, each will have a width of

π

3
− 0

6

i.e.
π

18
rad (or 10◦), and the ordinates will occur at 0,

π

18
,
π

9
,
π

6
,

2π

9
,

5π

18
and

π

3
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Corresponding values of

√

1 −
1

3
sin2 θ are shown in

the table below:

θ 0
π

18

π

9

π

6

(or 10◦) (or 20◦) (or 30◦)

√

1 −
1

3
sin2 θ 1.0000 0.9950 0.9803 0.9574

θ
2π

9

5π

18

π

3

(or 40◦) (or 50◦) (or 60◦)

√

1 −
1

3
sin2 θ 0.9286 0.8969 0.8660

From equation (5):

∫ π
3

0

√

1 −
1

3
sin2 θ dθ

≈
1

3

( π

18

)

[(1.0000 + 0.8660) + 4(0.9950 + 0.9574

+ 0.8969) + 2(0.9803 + 0.9286)]

=
1

3

( π

18

)

[1.8660 + 11.3972 + 3.8178]

= 0.994, correct to 3 decimal places.

Problem 8. An alternating current i has the

following values at equal intervals of 2.0

milliseconds:

Time (ms) 0 2.0 4.0 6.0 8.0 10.0 12.0

Current i

(A) 0 3.5 8.2 10.0 7.3 2.0 0

Charge, q, in millicoulombs, is given by

q =
∫ 12.0

0
i dt. Use Simpson’s rule to determine the

approximate charge in the 12 ms period

From equation (5):

Charge, q =
∫ 12.0

0

i dt

≈
1

3
(2.0)[(0 + 0) + 4(3.5 + 10.0 + 2.0)

+ 2(8.2 + 7.3)]

= 62 mC

Now try the following exercise

Exercise 190 Further problems on

Simpson’s rule

In Problems 1 to 5, evaluate the definite integrals

using Simpson’s rule, giving the answers correct

to 3 decimal places.

1.

∫ π/2

0

√
sin x dx (Use 6 intervals) [1.187]

2.

∫ 1.6

0

1

1 + θ4
dθ (Use 8 intervals) [1.034]

3.

∫ 1.0

0.2

sin θ

θ
dθ (Use 8 intervals) [0.747]

4.

∫ π/2

0

x cos x dx (Use 6 intervals) [0.571]

5.

∫ π/3

0

ex2

sin 2x dx (Use 10 intervals)

[1.260]

In Problems 6 and 7 evaluate the definite inte-

grals using (a) integration, (b) the trapezoidal rule,

(c) the mid-ordinate rule, (d) Simpson’s rule. Give

answers correct to 3 decimal places.

6.

∫ 4

1

4

x3
dx (Use 6 intervals)





(a) 1.875 (b) 2.107

(c) 1.765 (d) 1.916





7.

∫ 6

2

1
√

2x − 1
dx (Use 8 intervals)





(a) 1.585 (b) 1.588

(c) 1.583 (d) 1.585





In Problems 8 and 9 evaluate the definite integrals

using (a) the trapezoidal rule, (b) the mid-ordinate

rule, (c) Simpson’s rule. Use 6 intervals in each

case and give answers correct to 3 decimal places.

8.

∫ 3

0

√

1 + x4 dx

[(a) 10.194 (b) 10.007 (c) 10.070]

9.

∫ 0.7

0.1

1
√

1 − y2
dy

[(a) 0.677 (b) 0.674 (c) 0.675]



476 Engineering Mathematics
Se

ct
io

n
9

10. A vehicle starts from rest and its velocity is

measured every second for 8 seconds, with

values as follows:

time t (s) velocity v (ms−1)

0 0

1.0 0.4

2.0 1.0

3.0 1.7

4.0 2.9

5.0 4.1

6.0 6.2

7.0 8.0

8.0 9.4

The distance travelled in 8.0 seconds is given

by

∫ 8.0

0

v dt.

Estimate this distance using Simpson’s rule,

giving the answer correct to 3 significant

figures. [28.8 m]

11. A pin moves along a straight guide so that its

velocity v (m/s) when it is a distance x (m)

from the beginning of the guide at time t (s)

is given in the table below:

t (s) v (m/s)

0 0

0.5 0.052

1.0 0.082

1.5 0.125

2.0 0.162

2.5 0.175

3.0 0.186

3.5 0.160

4.0 0

Use Simpson’s rule with 8 intervals to deter-

mine the approximate total distance travelled

by the pin in the 4.0 second period.

[0.485 m]
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Revision Test 15

This Revision test covers the material contained in Chapters 51 to 54. The marks for each question are shown in

brackets at the end of each question.

1. Determine: (a)

∫

x − 11

x2 − x − 2
dx

(b)

∫

3 − x

(x2 + 3)(x + 3)
dx (21)

2. Evaluate:

∫ 2

1

3

x2(x + 2)
dx correct to 4 significant

figures. (11)

3. Determine:

∫

dx

2 sin x + cos x
(7)

4. Determine the following integrals:

(a)

∫

5xe2xdx (b)

∫

t2 sin 2t dt (12)

5. Evaluate correct to 3 decimal places:

∫ 4

1

√
x ln x dx (9)

6. Evaluate:

∫ 3

1

5

x2
dx using

(a) integration

(b) the trapezoidal rule

(c) the mid-ordinate rule

(d) Simpson’s rule.

In each of the approximate methods use 8 intervals

and give the answers correct to 3 decimal places.

(16)

7. An alternating current i has the following values

at equal intervals of 5 ms:

Time t (ms) 0 5 10 15 20 25 30

Current i (A) 0 4.8 9.1 12.7 8.8 3.5 0

Charge q, in coulombs, is given by

q =
∫ 30×10−3

0

i dt.

Use Simpson’s rule to determine the approximate

charge in the 30 ms period. (4)



Chapter 55

Areas under and
between curves

55.1 Area under a curve

The area shown shaded in Fig. 55.1 may be determined

using approximate methods (such as the trapezoidal

rule, the mid-ordinate rule or Simpson’s rule) or, more

precisely, by using integration.

0

δx

y   f (x)

x   a x   b

y

x

y

Figure 55.1

(i) Let A be the area shown shaded in Fig. 55.1 and let

this area be divided into a number of strips each

of width δx. One such strip is shown and let the

area of this strip be δA.

Then: δA ≈ yδx (1)

The accuracy of statement (1) increases when the

width of each strip is reduced, i.e. area A is divided

into a greater number of strips.

(ii) Area A is equal to the sum of all the strips from

x = a to x = b,

i.e. A = limit
δx→0

x=b
∑

x=a

y δx (2)

(iii) From statement (1),
δA

δx
≈ y (3)

In the limit, as δx approaches zero,
δA

δx
becomes

the differential coefficient
dA

dx

Hence limit
δx→0

(

δA

δx

)

=
dA

dx
= y, from statement (3).

By integration,

∫

dA

dx
dx =

∫

y dx i.e. A =
∫

y dx

The ordinates x = a and x = b limit the area and

such ordinate values are shown as limits. Hence

A =
∫ b

a

y dx (4)

(iv) Equating statements (2) and (4) gives:

Area A = limit
δx→0

x=b
∑

x=a

y δx =

∫ b

a

y dx

=

∫ b

a

f (x) dx

(v) If the area between a curve x = f ( y), the y-axis

and ordinates y = p and y = q is required, then

area =
∫ q

p

x dy

Thus, determining the area under a curve by integration

merely involves evaluating a definite integral.

There are several instances in engineering and science

where the area beneath a curve needs to be accurately
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determined. For example, the areas between limits

of a:

velocity/time graph gives distance travelled,

force/distance graph gives work done,

voltage/current graph gives power, and so on.

Should a curve drop below the x-axis, then y (= f (x))

becomes negative and f (x) dx is negative. When deter-

mining such areas by integration, a negative sign is

placed before the integral. For the curve shown in

Fig. 55.2, the total shaded area is given by (area E +
area F + area G).

E

0 F

G

y

a b c d

y   f(x)

x

Figure 55.2

By integration, total shaded area

=

∫ b

a

f (x) dx −

∫ c

b

f (x) dx +

∫ d

c

f (x) dx

(Note that this is not the same as
∫ d

a
f (x) dx.)

It is usually necessary to sketch a curve in order to check

whether it crosses the x-axis.

55.2 Worked problems on the area
under a curve

Problem 1. Determine the area enclosed by

y = 2x + 3, the x-axis and ordinates x = 1 and x = 4

y = 2x + 3 is a straight line graph as shown in Fig. 55.3,

where the required area is shown shaded.

By integration,

shaded area =
∫ 4

1

y dx

=
∫ 4

1

(2x + 3) dx

=
[

2x2

2
+ 3x

]4

1

= [(16 + 12) − (1 + 3)]

= 24 square units

12

10

8

6

4

2

0 21 3 4 5

y   2x ! 3 

x

y

Figure 55.3

[This answer may be checked since the shaded area is a

trapezium.

Area of trapezium

=
1

2

(

sum of parallel

sides

) (

perpendicular distance

between parallel sides

)

=
1

2
(5 + 11)(3)

= 24 square units]

Problem 2. The velocity v of a body t seconds

after a certain instant is: (2t2 + 5) m/s. Find by

integration how far it moves in the interval from

t = 0 to t = 4 s

Since 2t2 + 5 is a quadratic expression, the curve

v = 2t2 + 5 is a parabola cutting the v-axis at v = 5, as

shown in Fig. 55.4.

The distance travelled is given by the area under the v/t

curve (shown shaded in Fig. 55.4).

By integration,

shaded area =
∫ 4

0

v dt

=
∫ 4

0

(2t2 + 5) dt

=
[

2t3

3
+ 5t

]4

0

=
(

2(43)

3
+ 5(4)

)

− (0)

i.e. distance travelled = 62.67 m
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40

30

20

10

5

1 2 3 40

v (m/s)

v   2t 2 ! 5

t (s)

Figure 55.4

Problem 3. Sketch the graph

y = x3 + 2x2 − 5x − 6 between x = −3 and x = 2

and determine the area enclosed by the curve and

the x-axis

y   x 3 ! 2x 2 " 5x " 6

y

x"2 "1

6

20 1"3

Figure 55.5

A table of values is produced and the graph sketched as

shown in Fig. 55.5 where the area enclosed by the curve

and the x-axis is shown shaded.

x −3 −2 −1 0 1 2

x3 −27 −8 −1 0 1 8

2x2 18 8 2 0 2 8

−5x 15 10 5 0 −5 −10

−6 −6 −6 −6 −6 −6 −6

y 0 4 0 −6 −8 0

Shaded area =
∫ −1

−3

y dx −
∫ 2

−1

y dx, the minus sign

before the second integral being necessary since the

enclosed area is below the x-axis.

Hence shaded area

=
∫ −1

−3

(x3 + 2x2 − 5x − 6) dx

−
∫ 2

−1

(x3 + 2x2 − 5x − 6) dx

=
[

x4

4
+

2x3

3
−

5x2

2
− 6x

]−1

−3

−
[

x4

4
+

2x3

3
−

5x2

2
− 6x

]2

−1

=
[{

1

4
−

2

3
−

5

2
+ 6

}

−
{

81

4
− 18 −

45

2
+ 18

}]

−
[{

4 +
16

3
− 10 − 12

}

−
{

1

4
−

2

3
−

5

2
+ 6

}]

=
[{

3
1

12

}

−
{

−2
1

4

}]

−
[{

−12
2

3

}

−
{

3
1

12

}]

=
[

5
1

3

]

−
[

−15
3

4

]

= 21
1

12
or 21.08 square units

Problem 4. Determine the area enclosed by the

curve y = 3x2 + 4, the x-axis and ordinates x = 1

and x = 4 by (a) the trapezoidal rule, (b) the
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mid-ordinate rule, (c) Simpson’s rule, and

(d) integration

0

4

1 2 3 4

50

40

30

20

10

y   3x
2
 ! 4

y

x

0

4

1.0

7

1.5

10.75

2.0

16

2.5

22.75

3.0

31

3.5

40.75

4.0

52y

x

Figure 55.6

The curve y = 3x2 + 4 is shown plotted in Fig. 55.6.

(a) By the trapezoidal rule

Area =
(

width of

interval

)

[

1

2

(

first + last

ordinate

)

+

(

sum of

remaining

ordinates

)]

Selecting 6 intervals each of width 0.5 gives:

Area = (0.5)

[

1

2
(7 + 52) + 10.75 + 16

+ 22.75 + 31 + 40.75

]

= 75.375 square units

(b) By the mid-ordinate rule,

area = (width of interval) (sum of mid-ordinates).

Selecting 6 intervals, each of width 0.5 gives the

mid-ordinates as shown by the broken lines in

Fig. 55.6.

Thus, area = (0.5)(8.5 + 13 + 19 + 26.5

+ 35.5 + 46)

= 74.25 square units

(c) By Simpson’s rule,

area =
1

3

(

width of

interval

) [(

first + last

ordinates

)

+ 4

(

sum of even

ordinates

)

+ 2

(

sum of remaining

odd ordinates

)]

Selecting 6 intervals, each of width 0.5, gives:

area =
1

3
(0.5)[(7 + 52) + 4(10.75 + 22.75

+ 40.75) + 2(16 + 31)]

= 75 square units

(d) By integration, shaded area

=
∫ 4

1

y dx

=
∫ 4

1

(3x2 + 4) dx

=
[

x3 + 4x
]4

1

= 75 square units

Integration gives the precise value for the area

under a curve. In this case Simpson’s rule is seen

to be the most accurate of the three approximate

methods.

Problem 5. Find the area enclosed by the curve

y = sin 2x, the x-axis and the ordinates x = 0 and

x = π/3

A sketch of y = sin 2x is shown in Fig. 55.7.

1

0 π/2 ππ/3

y   sin 2x

x

y

Figure 55.7

(Note that y = sin 2x has a period of
2π

2
, i.e. π radians.)
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Shaded area =
∫ π/3

0

y dx

=
∫ π/3

0

sin 2x dx

=
[

−
1

2
cos 2x

]π/3

0

=
{

−
1

2
cos

2π

3

}

−
{

−
1

2
cos 0

}

=
{

−
1

2

(

−
1

2

)}

−
{

−
1

2
(1)

}

=
1

4
+

1

2
=

3

4
square units

Now try the following exercise

Exercise 191 Further problems on area

under curves

Unless otherwise stated all answers are in square

units.

1. Shown by integration that the area of the tri-

angle formed by the line y = 2x, the ordinates

x = 0 and x = 4 and the x-axis is 16 square

units.

2. Sketch the curve y = 3x2 + 1 between x = −2

and x = 4. Determine by integration the area

enclosed by the curve, the x-axis and ordinates

x = −1 and x = 3. Use an approximate method

to find the area and compare your result with

that obtained by integration. [32]

In Problems 3 to 8, find the area enclosed between

the given curves, the horizontal axis and the given

ordinates.

3. y = 5x; x = 1, x = 4 [37.5]

4. y = 2x2 − x + 1; x = −1, x = 2 [7.5]

5. y = 2 sin 2θ; θ = 0, θ =
π

4
[1]

6. θ = t + et ; t = 0, t = 2 [8.389]

7. y = 5 cos 3t; t = 0, t =
π

6
[1.67]

8. y = (x − 1)(x − 3); x = 0, x = 3 [2.67]

55.3 Further worked problems on
the area under a curve

Problem 6. A gas expands according to the law

pv = constant. When the volume is 3 m3 the

pressure is 150 kPa. Given that

work done =
∫ v2

v1

p dv, determine the work

done as the gas expands from 2 m3 to a

volume of 6 m3

pv = constant. When v = 3 m3 and p = 150 kPa the

constant is given by (3 × 150) = 450 kPa m3 or 450 kJ.

Hence pv = 450, or p =
450

v

Work done =
∫ 6

2

450

v
dv

=
[

450 ln v
]6

2
= 450[ ln 6 − ln 2]

= 450 ln
6

2
= 450 ln 3 = 494.4 kJ

Problem 7. Determine the area enclosed by the

curve y = 4 cos

(

θ

2

)

, the θ-axis and ordinates θ = 0

and θ =
π

2

The curve y = 4 cos (θ/2) is shown in Fig. 55.8.

4

0 2π 3π 4ππ/2 π

2

qy   4 cos

y

x

Figure 55.8

(Note that y = 4 cos

(

θ

2

)

has a maximum value of 4 and

period 2π/(1/2), i.e. 4π rads.)

Shaded area =
∫ π/2

0

y dθ =
∫ π/2

0

4 cos
θ

2
dθ

=

[

4

(

1
1
2

)

sin
θ

2

]π/2

0
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=
(

8 sin
π

4

)

− (8 sin 0)

= 5.657 square units

Problem 8. Determine the area bounded by the

curve y = 3et/4, the t-axis and ordinates t = −1 and

t = 4, correct to 4 significant figures

A table of values is produced as shown.

t −1 0 1 2 3 4

y = 3et/4 2.34 3.0 3.85 4.95 6.35 8.15

Since all the values of y are positive the area required is

wholly above the t-axis.

Hence area =
∫ 4

1

y dt

=
∫ 4

1

3et/4dt =

[

3
(

1
4

)et/4

]4

−1

= 12
[

et/4
]4

−1
= 12(e1 − e−1/4)

= 12(2.7183 − 0.7788)

= 12(1.9395) = 23.27 square units

Problem 9. Sketch the curve y = x2 + 5 between

x = −1 and x = 4. Find the area enclosed by the

curve, the x-axis and the ordinates x = 0 and x = 3.

Determine also, by integration, the area enclosed by

the curve and the y-axis, between the same limits

A table of values is produced and the curve y = x2 + 5

plotted as shown in Fig. 55.9.

x −1 0 1 2 3

y 6 5 6 9 14

Shaded area =
∫ 3

0

y dx =
∫ 3

0

(x2 + 5) dx

=
[

x3

5
+ 5x

]3

0

= 24 square units

When x = 3, y = 32 + 5 = 14, and when x = 0, y = 5.

0 1 2 3 4 x

10

14
15

20

"1

y   x2 ! 5BA

y

C

P Q

5

Figure 55.9

Since y = x2 + 5 then x2 = y − 5 and x =
√

y − 5

The area enclosed by the curve y = x2 + 5 (i.e.

x =
√

y − 5), the y-axis and the ordinates y = 5 and

y = 14 (i.e. area ABC of Fig. 55.9) is given by:

Area =
∫ y=14

y=5

x dy =
∫ 14

5

√

y − 5 dy

=
∫ 14

5

(y − 5)1/2 dy

Let u = y − 5, then
du

dy
= 1 and dy = du

Hence

∫

(y − 5)1/2dy =
∫

u1/2du =
2

3
u3/2

(for algebraic substitutions, see Chapter 49)

Since u = y − 5 then
∫ 14

5

√

y − 5 dy =
2

3

[

(y − 5)3/2
]14

5

=
2

3
[
√

93 − 0]

= 18 square units

(Check: From Fig. 55.9, area BCPQ + area ABC = 24 +
18 = 42 square units, which is the area of rectangle

ABQP.)

Problem 10. Determine the area between the

curve y = x3 − 2x2 − 8x and the x-axis

y = x3 − 2x2 − 8x = x(x2 − 2x − 8)

= x(x + 2)(x − 4)

When y = 0, then x = 0 or (x + 2) = 0 or (x − 4) = 0,

i.e. when y = 0, x = 0 or −2 or 4, which means that

the curve crosses the x-axis at 0, −2 and 4. Since

the curve is a continuous function, only one other

co-ordinate value needs to be calculated before a sketch
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of the curve can be produced. When x = 1, y = −9,

showing that the part of the curve between x = 0 and

x = 4 is negative.A sketch of y = x3 − 2x2 − 8x is shown

in Fig. 55.10. (Another method of sketching Fig. 55.10

would have been to draw up a table of values.)

Figure 55.10

Shaded area =
∫ 0

−2

(x3 − 2x2 − 8x) dx

−
∫ 4

0

(x3 − 2x2 − 8x) dx

=
[

x4

4
−

2x3

3
−

8x2

2

]0

−2

−
[

x4

4
−

2x3

3
−

8x2

2

]4

0

=
(

6
2

3

)

−
(

−42
2

3

)

= 49
1

3
square units

Now try the following exercise

Exercise 192 Further problems on areas

under curves

In Problems 1 and 2, find the area enclosed between

the given curves, the horizontal axis and the given

ordinates.

1. y = 2x3; x = −2, x = 2 [16 square units]

2. xy = 4; x = 1, x = 4 [5.545 square units]

3. The force F newtons acting on a body at

a distance x metres from a fixed point is

given by: F = 3x + 2x2. If work done =
∫ x2

x1

F dx, determine the work done when the

body moves from the position where x = 1 m

to that where x = 3 m. [29.33 Nm]

4. Find the area between the curve y = 4x − x2

and the x-axis. [10.67 square units]

5. Determine the area enclosed by the curve

y = 5x2 + 2, the x-axis and the ordinates x = 0

and x = 3. Find also the area enclosed by the

curve and the y-axis between the same limits.

[51 sq. units, 90 sq. units]

6. Calculate the area enclosed between

y = x3 − 4x2 − 5x and the x-axis.

[73.83 sq. units]

7. The velocity v of a vehicle t seconds after a

certain instant is given by: v = (3t2 + 4) m/s.

Determine how far it moves in the interval from

t = 1 s to t = 5 s. [140 m]

8. A gas expands according to the law pv =
constant. When the volume is 2 m3 the pres-

sure is 250 kPa. Find the work done as the gas

expands from 1 m3 to a volume of 4 m3 given

that work done =
∫ v2

v1

p dv [693.1 kJ]

55.4 The area between curves

The area enclosed between curves y = f1(x) and y = f2(x)

(shown shaded in Fig. 55.11) is given by:

shaded area =
∫ b

a

f2(x) dx −
∫ b

a

f1(x) dx

=
∫ b

a

[ f2(x) − f2(x)] dx

0

y   f1(x)

y   f2(x)

x

y

x   a x   b

Figure 55.11
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Problem 11. Determine the area enclosed

between the curves y = x2 + 1 and y = 7 − x

At the points of intersection, the curves are equal.

Thus, equating the y-values of each curve gives:

x2 + 1 = 7 − x, from which x2 + x − 6 = 0. Factorising

gives (x − 2)(x + 3) = 0, from which, x = 2 and x = −3.

By firstly determining the points of intersection the

range of x-values has been found. Tables of values are

produced as shown below.

x −3 −2 −1 0 1 2

y = x2 + 1 10 5 2 1 2 5

x −3 0 2

y = 7 − x 10 7 5

A sketch of the two curves is shown in Fig. 55.12.

"3 "2 "1

5

10

1 20

y   x2 ! 1

y   7 " x

x

y

Figure 55.12

Shaded area =
∫ 2

−3

(7 − x)dx −
∫ 2

−3

(x2 + 1)dx

=
∫ 2

−3

[(7 − x) − (x2 + 1)]dx

=
∫ 2

−3

(6 − x − x2)dx

=
[

6x −
x2

2
−

x3

3

]2

−3

=
(

12 − 2 −
8

3

)

−
(

−18 −
9

2
+ 9

)

=
(

7
1

3

)

−
(

−13
1

2

)

= 20
5

6
square units

Problem 12. (a) Determine the coordinates of the

points of intersection of the curves y = x2 and

y2 = 8x. (b) Sketch the curves y = x2 and y2 = 8x on

the same axes. (c) Calculate the area enclosed by

the two curves

(a) At the points of intersection the coordinates of the

curves are equal. When y = x2 then y2 = x4.

Hence at the points of intersection x4 = 8x, by

equating the y2 values.

Thus x4 − 8x = 0, from which x(x3 − 8) = 0, i.e.

x = 0 or (x3 − 8) = 0.

Hence at the points of intersection x = 0 or x = 2.

When x = 0, y = 0 and when x = 2, y = 22 = 4.

Hence the points of intersection of the curves

y = x2 and y2 = 8 x are (0, 0) and (2, 4)

(b) A sketch of y = x2 and y2 = 8x is shown in

Fig. 55.13

Figure 55.13

(c) Shaded area =
∫ 2

0

{
√

8x − x2}dx

=
∫ 2

0

{(
√

8)x1/2 − x2}dx

=

[

(
√

8)
x3/2

( 3
2
)

−
x3

3

]2

0

=

{√
8
√

8

( 3
2
)

−
8

3

}

− {0}

=
16

3
−

8

3
=

8

3

= 2
2

3
square units
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Problem 13. Determine by integration the area

bounded by the three straight lines y = 4 − x, y = 3x

and 3y = x

Each of the straight lines is shown sketched in

Fig. 55.14.

Figure 55.14

Shaded area =
∫ 1

0

(

3x −
x

3

)

dx

+
∫ 3

1

[

(4 − x) −
x

3

]

dx

=
[

3x2

2
−

x2

6

]1

0

+
[

4x −
x2

2
−

x2

6

]3

1

=
[(

3

2
−

1

6

)

− (0)

]

+
[(

12 −
9

2
−

9

6

)

−
(

4 −
1

2
−

1

6

)]

=
(

1
1

3

)

+
(

6 − 3
1

3

)

= 4 square units

Now try the following exercise

Exercise 193 Further problems on areas

between curves

1. Determine the coordinates of the points of

intersection and the area enclosed between the

parabolas y2 = 3x and x2 = 3y.

[(0, 0) and (3, 3), 3 sq. units]

2. Sketch the curves y = x2 + 3 and y = 7 − 3x

and determine the area enclosed by them.

[20.83 square units]

3. Determine the area enclosed by the curves

y = sin x and y = cos x and the y-axis.

[0.4142 square units]

4. Determine the area enclosed by the three

straight lines y = 3x, 2y = x and y + 2x = 5

[2.5 sq. units]



Chapter 56

Mean and root mean
square values

56.1 Mean or average values

(i) The mean or average value of the curve shown in

Fig. 56.1, between x = a and x = b, is given by:

mean or average value,

y =
area under curve

length of base

y
y   f (x)

x   a x   b x0

y

Figure 56.1

(ii) When the area under a curve may be obtained by

integration then:

mean or average value,

y =

∫ b

a

y dx

b − a

i.e. y =
1

b − a

∫ b

a

f (x) dx

(iii) For a periodic function, such as a sine wave, the

mean value is assumed to be ‘the mean value over

half a cycle’, since the mean value over a complete

cycle is zero.

Problem 1. Determine, using integration, the

mean value of y = 5x2 between x = 1 and x = 4

Mean value,

y =
1

4 − 1

∫ 4

1

y dx =
1

3

∫ 4

1

5x2 dx

=
1

3

[

5x3

3

]4

1

=
5

9
[x3]4

1 =
5

9
(64 − 1) = 35

Problem 2. A sinusoidal voltage is given by

v = 100 sin ωt volts. Determine the mean value of

the voltage over half a cycle using integration

Half a cycle means the limits are 0 to π radians.

Mean value,

v =
1

π − 0

∫ π

0

v d(ωt)

=
1

π

∫ π

0

100 sin ωt d(ωt) =
100

π

[

−cos ωt
]π

0

=
100

π
[(−cos π) − (−cos 0)]

=
100

π
[(+1) − (−1)] =

200

π

= 63.66 volts

[Note that for a sine wave,

mean value =
2

π
× maximum value
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In this case, mean value =
2

π
× 100 = 63.66V]

Problem 3. Calculate the mean value of

y = 3x2 + 2 in the range x = 0 to x = 3 by (a) the

mid-ordinate rule and (b) integration

(a) A graph of y = 3x2 over the required range is

shown in Fig. 56.2 using the following table:

x 0 0.5 1.0 1.5 2.0 2.5 3.0

y 2.0 2.75 5.0 8.75 14.0 20.75 29.0

30

y

20

10

2

0 1 2 3 x

y   3x2 ! 2

Figure 56.2

Using the mid-ordinate rule, mean value

=
area under curve

length of base

=
sum of mid-ordinates

number of mid-ordinates

Selecting 6 intervals, each of width 0.5, the mid-

ordinates are erected as shown by the broken lines

in Fig. 56.2.

Mean value =

2.2 + 3.7 + 6.7 + 11.2

+ 17.2 + 24.7

6

=
65.7

6
= 10.95

(b) By integration, mean value

=
1

3 − 0

∫ 3

0

y dx =
1

3

∫ 3

0

(3x2 + 2)dx

=
1

3
[x3 + 2x]3

0 =
1

3
[(27 + 6) − (0)]

= 11

The answer obtained by integration is exact;

greater accuracy may be obtained by the mid-

ordinate rule if a larger number of intervals are

selected.

Problem 4. The number of atoms, N , remaining

in a mass of material during radioactive decay after

time t seconds is given by: N = N0e−λt , where N0

and λ are constants. Determine the mean number of

atoms in the mass of material for the time period

t = 0 and t =
1

λ

Mean number of atoms

=
1

1

λ
− 0

∫ 1/λ

0

N dt =
1

1

λ

∫ 1/λ

0

N0e−λt dt

= λN0

∫ 1/λ

0

e−λt dt = λN0

[

e−λt

−λ

]1/λ

0

= −N0[e−λ(1/λ) − e0] = −N0[e−1 − e0]

= +N0[e0 − e−1] = N0[1 − e−1] = 0.632 N0

Now try the following exercise

Exercise 194 Further problems on mean or

average values

1. Determine the mean value of (a) y = 3
√

x from

x = 0 to x = 4 (b) y = sin 2θ from θ = 0 to

θ =
π

4
(c) y = 4et from t = 1 to t = 4

[

(a) 4 (b)
2

π
or 0.637 (c) 69.17

]

2. Calculate the mean value of y = 2x2 + 5 in the

range x = 1 to x = 4 by (a) the mid-ordinate

rule, and (b) integration. [19]
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3. The speed v of a vehicle is given by:

v = (4t + 3) m/s, where t is the time in seconds.

Determine the average value of the speed from

t = 0 to t = 3 s. [9 m/s]

4. Find the mean value of the curve

y = 6 + x − x2 which lies above the x-

axis by using an approximate method. Check

the result using integration. [4.17]

5. The vertical height h km of a missile varies

with the horizontal distance d km, and is given

by h = 4d − d2. Determine the mean height of

the missile from d = 0 to d = 4 km.

[2.67 km]

6. The velocity v of a piston moving with simple

harmonic motion at any time t is given by:

v = c sin ωt, where c is a constant. Determine

the mean velocity between t = 0 and t =
π

ω
[

2c

π

]

56.2 Root mean square values

The root mean square value of a quantity is ‘the sqaure

root of the mean value of the squared values of the quan-

tity’ taken over an interval. With reference to Fig. 56.1,

the r.m.s. value of y = f (x) over the range x = a to x = b

is given by:

r.m.s. value =

√

1

b − a

∫ b

a

y2 dx

One of the principal applications of r.m.s. values is with

alternating currents and voltages. The r.m.s. value of

an alternating current is defined as that current which

will give the same heating effect as the equivalent direct

current.

Problem 5. Determine the r.m.s. value of y = 2x2

between x = 1 and x = 4

R.m.s. value

=

√

1

4 − 1

∫ 4

1

y2 dx =

√

1

3

∫ 4

1

(2x2)2 dx

=

√

1

3

∫ 4

1

4x4 dx =

√

4

3

[

x5

5

]4

1

=
√

4

15
(1024 − 1) =

√
272.8 = 16.5

Problem 6. A sinusoidal voltage has a maximum

value of 100V. Calculate its r.m.s. value

A sinusoidal voltagevhaving a maximum value of 100V

may be written as: v = 100 sin θ. Over the range θ = 0

to θ = π,

r.m.s. value

=

√

1

π − 0

∫ π

0

v2 dθ

=

√

1

π

∫ π

0

(100 sin θ)2 dθ

=

√

10 000

π

∫ π

0

sin2 θ dθ

which is not a ‘standard’ integral. It is shown in Chapter

27 that cos 2A = 1 − 2 sin2 A and this formula is used

whenever sin2 A needs to be integrated.

Rearranging cos 2A = 1 − 2 sin2 A gives

sin2 A = 1
2
(1 − cos 2A)

Hence

√

10 000

π

∫ π

0

sin2 θ dθ

=

√

10 000

π

∫ π

0

1

2
(1 − cos 2θ) dθ

=

√

10 000

π

1

2

[

θ −
sin 2θ

2

]π

0

=

√

10 000

π

1

2

[(

π −
sin 2π

2

)

−
(

0 −
sin 0

2

)]

=
√

10 000

π

1

2
[π] =

√

10 000

2

=
100
√

2
= 70.71 volts

[Note that for a sine wave,

r.m.s. value =
1

√
2

× maximum value.

In this case, r.m.s. value =
1

√
2

× 100 = 70.71V]
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Problem 7. In a frequency distribution the

average distance from the mean, y, is related to the

variable, x, by the equation y = 2x2 − 1. Determine,

correct to 3 significant figures, the r.m.s. deviation

from the mean for values of x from −1 to +4

R.m.s. deviation

=

√

1

4 − −1

∫ 4

−1

y2 dx

=

√

1

5

∫ 4

−1

(2x2 − 1)2dx

=

√

1

5

∫ 4

−1

(4x4 − 4x2 + 1)dx

=

√

1

5

[

4x5

5
−

4x3

3
+ x

]4

−1

=

√

√

√

√

√

√

√

1

5

[(

4

5
(4)5 −

4

3
(4)3 + 4

)

−
(

4

5
(−1)5 −

4

3
(−1)3 + (−1)

)]

=
√

1

5
[(737.87) − (−0.467)]

=
√

1

5
[738.34]

=
√

147.67 = 12.152 = 12.2,

correct to 3 significant figures.

Now try the following exercise

Exercise 195 Further problems on root

mean square values

1. Determine the r.m.s. values of:

(a) y = 3x from x = 0 to x = 4

(b) y = t2 from t = 1 to t = 3

(c) y = 25 sin θ from θ = 0 to θ = 2π

[

(a) 6.928 (b) 4.919 (c)
25
√

2
or 17.68

]

2. Calculate the r.m.s. values of:

(a) y = sin 2θ from θ = 0 to θ =
π

4
(b) y = 1 + sin t from t = 0 to t = 2π

(c) y = 3 cos 2x from x = 0 to x = π

(Note that cos2 t =
1

2
(1 + cos 2t), from Chap-

ter 27).
[

(a)
1

√
2

or 0.707 (b) 1.225 (c) 2.121

]

3. The distance, p, of points from the mean value

of a frequency distribution are related to the

variable, q, by the equation p =
1

q
+ q. Deter-

mine the standard deviation (i.e. the r.m.s.

value), correct to 3 significant figures, for

values from q = 1 to q = 3. [2.58]

4. A current, i = 30 sin 100πt amperes is applied

across an electric circuit. Determine its mean

and r.m.s. values, each correct to 4 significant

figures, over the range t = 0 to t = 10 ms.

[19.10A, 21.21A]

5. A sinusoidal voltage has a peak value of 340V.

Calculate its mean and r.m.s. values, correct to

3 significant figures. [216V, 240V]

6. Determine the form factor, correct to 3 sig-

nificant figures, of a sinusoidal voltage of

maximum value 100 volts, given that form

factor =
r.m.s. value

average value
[1.11]

7. A wave is defined by the equation:

v = E1 sin ωt + E3 sin 3ωt

where, E1, E3 and ω are constants.

Determine the r.m.s. value ofvover the interval

0 ≤ t ≤
π

ω




√

E2
1 + E2

3

2







Chapter 57

Volumes of solids of
revolution

57.1 Introduction

If the area under the curve y = f (x), (shown in

Fig. 57.1(a)), between x = a and x = b is rotated 360◦

about the x-axis, then a volume known as a solid of

revolution is produced as shown in Fig. 57.1(b).

(a)

(b)

x

y

y

0

0

y   f (x)

y   f (x)

y

y

x   a x   b x

dx

dx

ba

Figure 57.1

The volume of such a solid may be determined precisely

using integration.

(i) Let the area shown in Fig. 57.1(a) be divided into

a number of strips each of width δx. One such strip

is shown shaded.

(ii) When the area is rotated 360◦ about the x-axis,

each strip produces a solid of revolution approx-

imating to a circular disc of radius y and thick-

ness δx. Volume of disc = (circular cross-sectional

area) (thickness) = (πy2)(δx)

(iii) Total volume, V , between ordinates x = a and

x = b is given by:

Volume V = limit
δx→0

x=b
∑

x=a

πy2
δx =

∫ b

a

πy2 dx

If a curve x = f (y) is rotated about the y-axis 360◦

between the limits y = c and y = d, as shown in

Fig. 57.2, then the volume generated is given by:

Volume V = limit
δy→0

y=d
∑

y=c

πx2
δy =

∫ d

c

πx2 dy

0

dy

x   f (y)

y

x

x

y   d

y   c

Figure 57.2
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57.2 Worked problems on volumes of
solids of revolution

Problem 1. Determine the volume of the solid of

revolution formed when the curve y = 2 is rotated

360◦ about the x-axis between the limits x = 0

to x = 3

When y = 2 is rotated 360◦ about the x-axis between

x = 0 and x = 3 (see Fig. 57.3):

volume generated

=
∫ 3

0

πy2 dx =
∫ 3

0

π(2)2 dx

=
∫ 3

0

4π dx = 4π[x]3
0 = 12π cubic units

[Check: The volume generated is a cylinder of radius 2

and height 3.

Volume of cylinder = πr2h = π(2)2(3) = 12π cubic

units.]

2

1

0 1 2 3

"1

"2

y   2
y

x

Figure 57.3

Problem 2. Find the volume of the solid of

revolution when the cure y = 2x is rotated

one revolution about the x-axis between the limits

x = 0 and x = 5

When y = 2x is revolved one revolution about the

x-axis between x = 0 and x = 5 (see Fig. 57.4) then:

volume generated

=
∫ 5

0

πy2dx =
∫ 5

0

π(2x)2dx

=
∫ 5

0

4πx2dx = 4π

[

x3

3

]5

0

=
500π

3
= 166

2

3
π cubic units

10

10
5

0 1 2 3 4 5

"5

"10

y   2x

y

x

Figure 57.4

[Check: The volume generated is a cone of radius 10

and height 5. Volume of cone

=
1

3
πr2h =

1

3
π(10)25 =

500π

3

= 166
2

3
π cubic units.]

Problem 3. The curve y = x2 + 4 is rotated one

revolution about the x-axis between the limits

x = 1 and x = 4. Determine the volume of the

solid of revolution produced

30

20

10

5
4

0 1 2 3 4 5

y   x2 ! 4

y

x

A B

CD

Figure 57.5

Revolving the shaded area shown in Fig. 57.5 about the

x-axis 360◦ produces a solid of revolution given by:

Volume =
∫ 4

1

πy2 dx =
∫ 4

1

π(x2 + 4)2dx

=
∫ 4

1

π(x4 + 8x2 + 16) dx
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= π

[

x5

5
+

8x3

3
+ 16x

]4

1

= π[(204.8 + 170.67 + 64) − (0.2 + 2.67 + 16)]

= 420.6π cubic units

Problem 4. If the curve in Problem 3 is revolved

about the y-axis between the same limits, determine

the volume of the solid of revolution produced

The volume produced when the curve y = x2 + 4 is

rotated about the y-axis between y = 5 (when x = 1)

and y = 20 (when x = 4), i.e. rotating area ABCD of

Fig. 57.5 about the y-axis is given by:

volume =
∫ 20

5

πx2 dy

Since y = x2 + 4, then x2 = y − 4

Hence volume =
∫ 20

5

π(y − 4)dy = π

[

y2

2
− 4y

]20

5

= π[(120) − (−7.5)]

= 127.5π cubic units

Now try the following exercise

Exercise 196 Further problems on volumes

of solids of revolution

(Answers are in cubic units and in terms of π).

In Problems 1 to 5, determine the volume of the

solid of revolution formed by revolving the areas

enclosed by the given curve, the x-axis and the

given ordinates through one revolution about the

x-axis.

1. y = 5x; x = 1, x = 4 [525π]

2. y = x2; x = −2, x = 3 [55π]

3. y = 2x2 + 3; x = 0, x = 2 [75.6π]

4.
y2

4
= x; x = 1, x = 5 [48π]

5. xy = 3; x = 2, x = 3 [1.5π]

In Problems 6 to 8, determine the volume of the

solid of revolution formed by revolving the areas

enclosed by the given curves, the y-axis and the

given ordinates through one revolution about the

y-axis.

6. y = x2; y = 1, y = 3 [4π]

7. y = 3x2 − 1; y = 2, y = 4 [2.67π]

8. y =
2

x
; y = 1, y = 3 [2.67π]

9. The curve y = 2x2 + 3 is rotated about (a) the

x-axis between the limits x = 0 and x = 3,

and (b) the y-axis, between the same limits.

Determine the volume generated in each case.

[(a) 329.4π (b) 81π]

57.3 Further worked problems on
volumes of solids of revolution

Problem 5. The area enclosed by the curve

y = 3e
x
3, the x-axis and ordinates x = −1 and x = 3

is rotated 360◦ about the x-axis. Determine the

volume generated

8

4

0 1 21 3

y ! 3e3
x

y

x

Figure 57.6

A sketch of y = 3e
x
3 is shown in Fig. 57.6. When the

shaded area is rotated 360◦ about the x-axis then:

volume generated =
∫ 3

−1

πy2 dx

=
∫ 3

−1

π

(

3e
x
3

)2

dx

= 9π

∫ 3

−1

e
2x
3 dx



494 Engineering Mathematics
Se

ct
io

n
9

= 9π







e
2x
3

2

3







3

−1

=
27π

2

(

e2 − e
− 2

3

)

= 92.82π cubic units

Problem 6. Determine the volume generated

when the area above the x-axis bounded by the

curve x2 + y2 = 9 and the ordinates x = 3 and

x = −3 is rotated one revolution about the x-axis

Figure 57.7 shows the part of the curve x2 + y2 = 9 lying

above the x-axis, Since, in general, x2 + y2 = r2 repre-

sents a circle, centre 0 and radius r, then x2 + y2 = 9

represents a circle, centre 0 and radius 3. When the

semi-circular area of Fig. 57.7 is rotated one revolution

about the x-axis then:

volume generated =
∫ 3

−3

πy2dx

=
∫ 3

−3

π(9 − x2) dx

= π

[

9x −
x3

3

]3

−3

= π[(18) − (−18)]

= 36π cubic units

0 3 3 x

x2
"y2

!9

y

Figure 57.7

(Check: The volume generated is a sphere of

radius 3. Volume of sphere =
4

3
πr3 =

4

3
π(3)3 =

36π cubic units.)

Problem 7. Calculate the volume of a frustum of

a sphere of radius 4 cm that lies between two

parallel planes at 1 cm and 3 cm from the centre and

on the same side of it

 2 0 2

x2
"y2

 ! 42

x

y

 4 1 43

Figure 57.8

The volume of a frustum of a sphere may be determined

by integration by rotating the curve x2 + y2 = 42 (i.e.

a circle, centre 0, radius 4) one revolution about the

x-axis, between the limits x = 1 and x = 3 (i.e. rotating

the shaded area of Fig. 57.8).

Volume of frustum =
∫ 3

1

πy2 dx

=
∫ 3

1

π(42 − x2) dx

= π

[

16x −
x3

3

]3

1

= π

[

(39) −
(

15
2

3

)]

= 23
1

3
π cubic units

Problem 8. The area enclosed between the two

parabolas y = x2 and y2 = 8x of Problem 12,

Chapter 55, page 485, is rotated 360◦ about the

x-axis. Determine the volume of the solid produced

The area enclosed by the two curves is shown in

Fig. 55.13, page 485. The volume produced by revolv-

ing the shaded area about the x-axis is given by:

[(volume produced by revolving y2 = 8x) − (volume

produced by revolving y = x2)]

i.e. volume =
∫ 2

0

π(8x) dx −
∫ 2

0

π(x4) dx

= π

∫ 2

0

(8x − x4) dx = π

[

8x2

2
−

x5

5

]2

0

= π

[(

16 −
32

5

)

− (0)

]

= 9.6π cubic units
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Now try the following exercise

Exercise 197 Further problems on volumes

of solids of revolution

(Answers to volumes are in cubic units and in

terms of π.)

In Problems 1 and 2, determine the volume of the

solid of revolution formed by revolving the areas

enclosed by the given curve, the x-axis and the

given ordinates through one revolution about the

x-axis.

1. y = 4ex; x = 0; x = 2 [428.8π]

2. y = sec x; x = 0, x =
π

4
[π]

In Problems 3 and 4, determine the volume of the

solid of revolution formed by revolving the areas

enclosed by the given curves, the y-axis and the

given ordinates through one revolution about the

y-axis.

3. x2 + y2 = 16; y = 0, y = 4 [42.67π]

4. x
√

y = 2; y = 2, y = 3 [1.622π]

5. Determine the volume of a plug formed by the

frustum of a sphere of radius 6 cm which lies

between two parallel planes at 2 cm and 4 cm

from the centre and on the same side of it.

(The equation of a circle, centre 0, radius r is

x2 + y2 = r2). [53.33π]

6. The area enclosed between the two curves

x2 = 3y and y2 = 3x is rotated about the x-axis.

Determine the volume of the solid formed.

[8.1π]

7. The portion of the curve y = x2 +
1

x
lying

between x = 1 and x = 3 is revolved 360◦ about

the x-axis. Determine the volume of the solid

formed. [57.07π]

8. Calculate the volume of the frustum of a sphere

of radius 5 cm that lies between two parallel

planes at 3 cm and 2 cm from the centre and

on opposite sides of it. [113.33π]

9. Sketch the curves y = x2 + 2 and y − 12 = 3x

from x = −3 to x = 6. Determine (a) the co-

ordinates of the points of intersection of the

two curves, and (b) the area enclosed by the

two curves. (c) If the enclosed area is rotated

360◦ about the x-axis, calculate the volume of

the solid produced




(a) (−2, 6) and (5, 27)

(b) 57.17 square units

(c) 1326π cubic units







Chapter 58

Centroids of simple shapes

58.1 Centroids

A lamina is a thin flat sheet having uniform thickness.

The centre of gravity of a lamina is the point where

it balances perfectly, i.e. the lamina’s centre of mass.

When dealing with an area (i.e. a lamina of negligible

thickness and mass) the term centre of area or centroid

is used for the point where the centre of gravity of a

lamina of that shape would lie.

58.2 The first moment of area

The first moment of area is defined as the product of

the area and the perpendicular distance of its centroid

from a given axis in the plane of the area. In Fig. 58.1,

the first moment of area A about axis XX is given by

(Ay) cubic units.

Area A

C

y

XX

Figure 58.1

58.3 Centroid of area between a
curve and the x-axis

(i) Figure 58.2 shows an area PQRS bounded by the

curve y = f (x), the x-axis and ordinates x = a and

x = b. Let this area be divided into a large number

of strips, each of width δx. A typical strip is shown

shaded drawn at point (x, y) on f (x). The area of

the strip is approximately rectangular and is given

by yδx. The centroid, C, has coordinates
(

x,
y

2

)

.

dx

0

y ! f (x)

R

x

y

S

y

P Q

x ! a x ! b x

( )
2

x,
y

C

Figure 58.2

(ii) First moment of area of shaded strip about axis

Oy = (yδx)(x) = xyδx.

Total first moment of area PQRS about axis

Oy = limit
δx→0

∑x=b
x=a xyδx =

∫ b

a
xy dx

(iii) First moment of area of shaded strip about axis

Ox = (yδx)
( y

2

)

=
1

2
y2x.

Total first moment of area PQRS about axis

Ox = limit
δx→0

∑x=b
x=a

1

2
y2δx =

1

2

∫ b

a

y2 dx

(iv) Area of PQRS, A =
∫ b

a
y dx (from Chapter 55)

(v) Let x̄ and ȳ be the distances of the centroid

of area A about Oy and Ox respectively then:

(x̄)(A) = total first moment of area A about axis

Oy =
∫ b

a
xy dx

from which, x̄ =

∫ b

a

xy dx

∫ b

a

y dx
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and (ȳ)(A) = total moment of area A about axis

Ox =
1

2

∫ b

a
y2 dx

from which, ȳ =

1

2

∫ b

a

y2 dx

∫ b

a

y dx

58.4 Centroid of area between
a curve and the y-axis

If x̄ and ȳ are the distances of the centroid of area EFGH

in Fig. 58.3 from Oy and Ox respectively, then, by

similar reasoning as above:

(x̄)(total area) = limit
δy→0

y=d
∑

y=c

xδy
( x

2

)

=
1

2

∫ d

c

x2dy

from which, x̄ =

1

2

∫ d

c

x2dy

∫ d

c

x dy

and (ȳ)(total area) = limit
δy→0

y=d
∑

y=c

(xδy)y =
∫ d

c

xy dy

from which, ȳ =

∫ d

c

xy dy

∫ d

c

x dy

0

(
2
, )

y

x

 

x ! f (y)

y ! d

y ! c

F
E

y

H G

C y

dy

x

x

Figure 58.3

58.5 Worked problems on centroids
of simple shapes

Problem 1. Show, by integration, that the

centroid of a rectangle lies at the intersection of

the diagonals

Let a rectangle be formed by the line y = b, the x-axis

and ordinates x = 0 and x = l as shown in Fig. 58.4. Let

the coordinates of the centroid C of this area be (x̄, ȳ).

By integration, x̄ =

∫ l

0

xy dx

∫ l

0

y dx

=

∫ l

0

(x)(b) dx

∫ l

0

b dx

=

[

b
x2

2

]l

0

[bx]l
0

=

bl 2

2
bl

=
1

2

and ȳ =

1

2

∫ l

0

y2 dx

∫ l

0

y dx

=

1

2

∫ l

0

b2 dx

bl

=

1

2
[b2x]l

0

bl
=

b2l

2
bl

=
b

2

0

y ! b
y

y

b

Cx

xl

Figure 58.4

i.e. the centroid lies at

(

l

2
,

b

2

)

which is at the

intersection of the diagonals.

Problem 2. Find the position of the centroid of

the area bounded by the curve y = 3x2, the x-axis

and the ordinates x = 0 and x = 2

If, (x̄, ȳ) are the co-ordinates of the centroid of the given

area then:

x̄ =

∫ 2

0

xy dx

∫ 2

0

y dx

=

∫ 2

0

x(3x2)dx

∫ 2

0

3x2dx

=

∫ 2

0

3x3dx

∫ 2

0

3x2dx

=

[

3x4

4

]2

0

[x3]2
0

=
12

8
= 1.5
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ȳ =

1

2

∫ 2

0

y2dx

∫ 2

0

ydx

=

1

2

∫ 2

0

(3x2)2dx

8

=

1

2

∫ 2

0

9x4dx

8
=

9

2

[

x5

5

]2

0

8
=

9

2

(

32

5

)

8

=
18

5
= 3.6

Hence the centroid lies at (1.5, 3.6)

Problem 3. Determine by integration the position

of the centroid of the area enclosed by the line

y = 4x, the x-axis and ordinates x = 0 and x = 3

3

12

0

y ! 4x
y

x

D

C

B

A

x

y

Figure 58.5

Let the coordinates of the area be (x̄, ȳ) as shown in

Fig. 58.5.

Then x̄ =

∫ 3

0

xy dx

∫ 3

0

y dx

=

∫ 3

0

(x)(4x)dx

∫ 3

0

4x dx

=

∫ 3

0

4x2dx

∫ 3

0

4x dx

=

[

4x3

3

]3

0

[2x2]3
0

=
36

18
= 2

ȳ =

1

2

∫ 3

0

y2dx

∫ 3

0

y dx

=

1

2

∫ 3

0

(4x)2dx

18

=

1

2

∫ 3

0

16x2dx

18
=

1

2

[

16x3

3

]3

0

18
=

72

18
= 4

Hence the centroid lies at (2, 4).

In Fig. 58.5, ABD is a right-angled triangle. The cen-

troid lies 4 units from AB and 1 unit from BD showing

that the centroid of a triangle lies at one-third of the

perpendicular height above any side as base.

Now try the following exercise

Exercise 198 Further problems on

centroids of simple shapes

In Problems 1 to 5, find the position of the centroids

of the areas bounded by the given curves, the x-axis

and the given ordinates.

1. y = 2x; x = 0, x = 3 [(2, 2)]

2. y = 3x + 2; x = 0, x = 4

[(2.50, 4.75)]

3. y = 5x2; x = 1, x = 4

[(3.036, 24.36)]

4. y = 2x3; x = 0, x = 2

[(1.60, 4.57)]

5. y = x(3x + 1); x = −1, x = 0

[(−0.833, 0.633)]

58.6 Further worked problems on
centroids of simple shapes

Problem 4. Determien the co-ordinates of the

centroid of the area lying between the curve

y = 5x − x2 and the x-axis

y = 5x − x2 = x(5 − x). When y = 0, x = 0 or x = 5,

Hence the curve cuts the x-axis at 0 and 5 as shown in

Fig. 58.6. Let the co-ordinates of the centroid be (x̄, ȳ)

then, by integration,

x̄ =

∫ 5

0

xy dx

∫ 5

0

y dx

=

∫ 5

0

x(5x − x2)dx

∫ 5

0

(5x − x2)dx

=

∫ 5

0

(5x2 − x3)dx

∫ 5

0

(5x − x2)dx

=

[

5x3

3
−

x4

4

]5

0
[

5x2

2
−

x3

3

]5

0
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=

625

3
−

625

4
125

2
−

125

3

=

625

12
125

6

=
(

625

12

) (

6

125

)

=
5

2
= 2.5

ȳ =

1

2

∫ 5

0

y2dx

∫ 5

0

y dx

=

1

2

∫ 5

0

(5x − x2)2dx

∫ 5

0

(5x − x2) dx

=

1

2

∫ 5

0

(25x2 − 10x3 + x4) dx

125

6

=

1

2

[

25x3

3
−

10x4

4
+

x5

5

]5

0

125

6

=

1

2

(

25(125)

3
−

6250

4
+ 625

)

125

6

= 2.5

Figure 58.6

Hence the centroid of the area lies at (2.5, 2.5)

(Note from Fig. 58.6 that the curve is symmetrical about

x = 2.5 and thus x̄ could have been determined ‘on

sight’).

Problem 5. Locate the centroid of the area

enclosed by the curve y = 2x2, the y-axis and

ordinates y = 1 and y = 4, correct to 3 decimal

places

From Section 58.4,

x̄ =

1

2

∫ 4

1

x2dy

∫ 4

1

x dy

=

1

2

∫ 4

1

y

2
dy

∫ 4

1

√

y

2
dy

=

1

2

[

y2

4

]4

1
[

2y3/2

3
√

2

]4

1

=

15

8
14

3
√

2

= 0.568

and ȳ =

∫ 4

1

xy dy

∫ 4

1

x dy

=

∫ 4

1

√

y

2
(y)d y

14

3
√

2

=

∫ 4

1

y3/2

√
2

dy

14

3
√

2

=

1
√

2







y5 /2

5

2







4

1

14

3
√

2

=

2

5
√

2
(31)

14

3
√

2

= 2.657

Hence the position of the centroid is at (0.568, 2.657)

Problem 6. Locate the position of the centroid

enclosed by the curves y = x2 and y2 = 8x

Figure 58.7 shows the two curves intersection at (0, 0)

and (2, 4). These are the same curves as used in

Problem 12, Chapter 55 where the shaded area was

4

3

2

1

0 1 2

2

y2 ! 8x
y !x2

y

y

x

y
C

x2

(or y !  8x)

Figure 58.7
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calculated as 2 2
3

square units. Let the co-ordinates of

centroid C be x̄ and ȳ.

By integration, x̄ =

∫ 2

0

xy dx

∫ 2

0

y dx

The value of y is given by the height of the typical strip

shown in Fig. 58.7, i.e. y =
√

8x − x2. Hence,

x̄ =

∫ 2

0

x(
√

8x − x2)dx

2
2

3

=

∫ 2

0

(
√

8 x3/2 − x3)

2
2

3

=







√
8

x5/2

5

2

−
x4

4







2

0

2
2

3

=



















√
8

√
25

5

2

− 4

2
2

3



















=
2

2

5

2
2

3

= 0.9

Care needs to be taken when finding ȳ in such

examples as this. From Fig. 58.7, y =
√

8x − x2 and
y

2
=

1

2
(
√

8x − x2). The perpendicular distance from

centroid C of the strip to Ox is
1

2
(
√

8x − x2) + x2.

Taking moments about Ox gives:

(total area) (ȳ) =
∑x=2

x=0(area of strip) (perpendicular

distance of centroid of strip to Ox)

Hence (area) (ȳ)

=
∫

[√
8x − x2

]

[

1

2
(
√

8x − x2) + x2

]

dx

i.e.

(

2
2

3

)

(ȳ) =
∫ 2

0

[√
8x − x2

]

(√
8x

2
+

x2

2

)

dx

=
∫ 2

0

(

8x

2
−

x4

2

)

dx =
[

8x2

4
−

x5

10

]2

0

=
(

8 − 3
1

5

)

− (0) = 4
4

5

Hence ȳ =
4

4

5

2
2

3

= 1.8

Thus the position of the centroid of the enclosed area

in Fig. 58.7 is at (0.9, 1.8)

Now try the following exercise

Exercise 199 Further problems on centroids

of simple shapes

1. Determine the position of the centroid of a

sheet of metal formed by the curve y = 4x − x2

which lies above the x-axis. [(2, 1.6)]

2. Find the coordinates of the centroid of the

area that lies between curve
y

x
= x − 2 and the

x-axis. [(1, −0.4)]

3. Determine the coordinates of the centroid of

the area formed between the curve y = 9 − x2

and the x-axis. [(0, 3.6)]

4. Determine the centroid of the area lying

between y = 4x2, the y-axis and the ordinates

y = 0 and y = 4. [(0.375, 2.40]

5. Find the position of the centroid of the area

enclosed by the curve y =
√

5x, the x-axis and

the ordinate x = 5. [(3.0, 1.875)]

6. Sketch the curve y2 = 9x between the limits

x = 0 and x = 4. Determine the position of the

centroid of this area. [(2.4, 0)]

7. Calculate the points of intersection of the

curves x2 = 4y and
y2

4
= x, and determine the

position of the centroid of the area enclosed by

them. [(0, 0) and (4, 4), (1.80, 1.80)]

8. Determine the position of the centroid of the

sector of a circle of radius 3 cm whose angle

subtended at the centre is 40◦.
[

On the centre line, 1.96 cm

from the centre

]

9. Sketch the curves y = 2x2 + 5 and

y − 8 = x(x + 2) on the same axes and

determine their points of intersection. Calcu-

late the coordinates of the centroid of the area

enclosed by the two curves.

[(−1, 7) and (3, 23), (1, 10.20)]
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58.7 Theorem of Pappus

A theorem of Pappus states:

‘If a plane area is rotated about an axis in its own plane

but not intersecting it, the volume of the solid formed is

given by the product of the area and the distance moved

by the centroid of the area’.

With reference to Fig. 58.8, when the curve y = f (x)

is rotated one revolution about the x-axis between the

limits x = a and x = b, the volume V generated is

given by:

volume V = (A)(2πȳ), from which,

ȳ =
V

2πA

Area A

y ! f (x)

y

x

y

C

x ! bx ! a

Figure 58.8

Problem 7. Determine the position of the

centroid of a semicircle of radius r by using the

theorem of Pappus. Check the answer by using

integration (given that the equation of a circle,

centre 0, radius r is x2 + y2 = r2)

A semicircle is shown in Fig. 58.9 with its diame-

ter lying on the x-axis and its centre at the origin.

Area of semicircle =
πr2

2
. When the area is rotated

about the x-axis one revolution a sphere is generated

of volume
4

3
πr3.

0 r r x

x2
"y2

 ! r2

y

C

y

Figure 58.9

Let centroid C be at a distance ȳ from the origin

as shown in Fig. 58.9. From the theorem of Pappus,

volume generated = area × distance moved through by

centroid i.e.

4

3
πr3 =

(

πr2

2

)

(2πȳ)

Hence ȳ =

4

3
πr3

π2r2
=

4r

3π

By integration,

ȳ =

1

2

∫ r

−r

y2dx

area

=

1

2

∫ r

−r

(r2 − x2)dx

πr2

2

=

1

2

[

r2x −
x3

3

]r

−r

πr2

2

=

1

2

[(

r3 −
r3

3

)

−
(

−r3 +
r3

3

)]

πr2

2

=
4r

3π

Hence the centroid of a semicircle lies on the axis

of symmetry, distance
4r

3π
(or 0.424 r) from its

diameter.

Problem 8. Calculate the area bounded by the

curve y = 2x2, the x-axis and ordinates x = 0 and

x = 3. (b) If this area is revolved (i) about the x-axis

and (ii) about the y-axis, find the volumes of the

solids produced. (c) Locate the position of the

centroid using (i) integration, and (ii) the theorem

of Pappus

18

12

6

0 1 2 3

y ! 2x2y

x

x

y

Figure 58.10
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(a) The required area is shown shaded in Fig. 58.10.

Area =
∫ 3

0

y dx =
∫ 3

0

2x2 dx =
[

2x3

3

]3

0

= 18 square units

(b) (i) When the shaded area of Fig. 58.10 is revolved

360◦ about the x-axis, the volume generated

=
∫ 3

0

πy2dx =
∫ 3

0

π(2x2)2dx

=
∫ 3

0

4πx4dx = 4π

[

x5

5

]3

0

= 4π

(

243

5

)

= 194.4π cubic units

(ii) When the shaded area of Fig. 58.10 is revolved

360◦ about the y-axis, the volume generated =
(volume generated by x = 3) − (volume generated

by y = 2x2)

=
∫ 18

0

π(3)2dy −
∫ 18

0

π

( y

2

)

dy

= π

∫ 18

0

(

9 −
y

2

)

dy = π

[

9y −
y2

4

]18

0

= 81π cubic units

(c) If the co-ordinates of the centroid of the shaded

area in Fig. 58.10 are (x̄, ȳ) then:

(i) by integration,

x̄ =

∫ 3

0

xy dx

∫ 3

0

y dx

=

∫ 3

0

x(2x2) dx

18

=

∫ 3

0

2x3dx

18
=

[

2x4

4

]3

0

18
=

81

36
= 2.25

ȳ =

1

2

∫ 3

0

y2dx

∫ 3

0

y dx

=

1

2

∫ 3

0

(2x2)2dx

18

=

1
2

∫ 3

0

4x4dx

18
=

1

2

[

4x5

5

]3

0

18
= 5.4

(ii) using the theorem of Pappus:

Volume generated when shaded area is revolved

about Oy = (area)(2πx̄)

i.e. 81π = (18)(2πx̄),

from which, x̄ =
81π

36π
= 2.25

Volume generated when shaded area is revolved

about Ox = (area)(2πȳ)

i.e. 194.4π = (18)(2πȳ),

from which, ȳ =
194.4π

36π
= 5.4

Hence the centroid of the shaded area in

Fig. 58.10 is at (2.25, 5.4)

Problem 9. A cylindrical pillar of diameter

400 mm has a groove cut round its circumference.

The section of the groove is a semicircle of diameter

50 mm. Determine the volume of material removed,

in cubic centimetres, correct to 4 significant figures

A part of the pillar showing the groove is shown in

Fig. 58.11.

The distance of the centroid of the semicircle from

its base is
4r

3π
(see Problem 7) =

4(25)

3π
=

100

3π
mm.

The distance of the centroid from the centre of the

pillar =
(

200 −
100

3π

)

mm.

400 mm
50 mm

200 mm

Figure 58.11
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The distance moved by the centroid in one revolution

= 2π

(

200 −
100

3π

)

=
(

400π −
200

3

)

mm.

From the theorem of Pappus,

volume = area × distance moved by centroid

=
(

1

2
π252

) (

400π −
200

3

)

= 1168250 mm3

Hence the volume of material removed is 1168 cm3

correct to 4 significant figures.

Problem 10. A metal disc has a radius of 5.0 cm

and is of thickness 2.0 cm. A semicircular groove of

diameter 2.0 cm is machined centrally around the

rim to form a pulley. Determine, using Pappus’

theorem, the volume and mass of metal removed

and the volume and mass of the pulley if the density

of the metal is 8000 kg m−3

A side view of the rim of the disc is shown in Fig. 58.12.

5.0 cm

2.0 cm

P
Q

RS

X X

Figure 58.12

When area PQRS is rotated about axis XX the vol-

ume generated is that of the pulley. The centroid of

the semicircular area removed is at a distance of
4r

3π

from its diameter (see Problem 7), i.e.
4(1.0)

3π
, i.e.

0.424 cm from PQ. Thus the distance of the centroid

from XX is (5.0 − 0.424), i.e. 4.576 cm. The distance

moved through in one revolution by the centroid is

2π(4.576) cm.

Area of semicircle

=
πr2

2
=

π(1.0)2

2
=

π

2
cm2

By the theorem of Pappus, volume generated

= area × distance moved by centroid

=
(π

2

)

(2π)(4.576)

i.e. volume of metal removed = 45.16 cm3

Mass of metal removed = density × volume

= 8000 kg m−3 ×
45.16

106
m3

= 0.3613 kg or 361.3 g

Volume of pulley = volume of cylindrical disc

− volume of metal removed

= π(5.0)2(2.0) − 45.16 = 111.9 cm3

Mass of pulley = density × volume

= 8000 kg m−3 ×
111.9

106
m3

= 0.8952 kg or 895.2 g

Now try the following exercise

Exercise 200 Further problems on the

theorem of Pappus

1. A right angled isosceles triangle having a

hypotenuse of 8 cm is revolved one revolution

about one of its equal sides as axis. Deter-

mine the volume of the solid generated using

Pappus’ theorem. [189.6 cm3]

2. A rectangle measuring 10.0 cm by 6.0 cm

rotates one revolution about one of its longest

sides as axis. Determine the volume of the

resulting cylinder by using the theorem of

Pappus. [1131 cm2]

3. Using (a) the theorem of Pappus, and (b) inte-

gration, determine the position of the centroid

of a metal template in the form of a quadrant

of a circle of radius 4 cm. (The equation of a

circle, centre 0, radius r is x2 + y2 = r2).




On the centre line, distance 2.40 cm

from the centre, i.e. at coordinates

(1.70, 1.70)
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4. (a) Determine the area bounded by the curve

y = 5x2, the x-axis and the ordinates

x = 0 and x = 3.

(b) If this area is revolved 360◦ about (i) the

x-axis, and (ii) the y-axis, find the vol-

umes of the solids of revolution pro-

duced in each case.

(c) Determine the co-ordinates of the cen-

troid of the area using (i) integral calcu-

lus, and (ii) the theorem of Pappus




(a) 45 square units (b) (i) 1215π

cubic units (ii) 202.5π cubic units

(c) (2.25, 13.5)





5. A metal disc has a radius of 7.0 cm and is

of thickness 2.5 cm. A semicircular groove of

diameter 2.0 cm is machined centrally around

the rim to form a pulley. Determine the vol-

ume of metal removed using Pappus’ theorem

and express this as a percentage of the origi-

nal volume of the disc. Find also the mass of

metal removed if the density of the metal is

7800 kg m−3.

[64.90 cm3, 16.86%, 506.2 g]



Chapter 59

Second moments of area

59.1 Second moments of area and
radius of gyration

The first moment of area about a fixed axis of a lamina

of area A, perpendicular distance y from the centroid

of the lamina is defined as Ay cubic units. The second

moment of area of the same lamina as above is given by

Ay2, i.e. the perpendicular distance from the centroid of

the area to the fixed axis is squared. Second moments of

areas are usually denoted by I and have limits of mm4,

cm4, and so on.

Radius of gyration

Several areas, a1, a2, a3, . . . at distances y1, y2, y3, . . .

from a fixed axis, may be replaced by a single area

A, where A = a1 + a2 + a3 + · · · at distance k from the

axis, such that Ak2 =
∑

ay2. k is called the radius

of gyration of area A about the given axis. Since

Ak2 =
∑

ay2 = I then the radius of gyration, k =

√

I

A
The second moment of area is a quantity much used in

the theory of bending of beams, in the torsion of shafts,

and in calculations involving water planes and centres

of pressure.

59.2 Second moment of area of
regular sections

The procedure to determine the second moment of area

of regular sections about a given axis is (i) to find the

second moment of area of a typical element and (ii)

to sum all such second moments of area by integrating

between appropriate limits.

For example, the second moment of area of the rect-

angle shown in Fig. 59.1 about axis PP is found by

initially considering an elemental strip of width δx, par-

allel to and distance x from axis PP. Area of shaded

strip = bδx. Second moment of area of the shaded strip

about PP = (x2)(bδx).

Figure 59.1

The second moment of area of the whole rectangle

about PP is obtained by summing all such strips between

x = 0 and x = l, i.e.
∑x=l

x=0 x2bδx. It is a fundamental

theorem of integration that

limit
δx→0

x=l
∑

x=0

x2bδx =
∫ l

0

x2b dx

Thus the second moment of area of the rectangle about

PP = b

∫ l

0

x2dx = b

[

x3

3

]l

0

=
bl3

3
Since the total area of the rectangle, A = lb, then

Ipp = (lb)

(

l2

3

)

=
Al2

3

Ipp = Ak2
pp thus k2

pp =
l2

3

i.e. the radius of gyration about axes PP,

kpp =

√

l2

3
=

l
√

3
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59.3 Parallel axis theorem

In Fig. 59.2, axis GG passes through the centroid C of

area A. Axes DD and GG are in the same plane, are

parallel to each other and distance d apart. The parallel

axis theorem states:

IDD = IGG + Ad2

Using the parallel axis theorem the second moment of

area of a rectangle about an axis through the centroid

may be determined. In the rectangle shown in Fig. 59.3,

Ipp =
bl3

3
(from above). From the parallel axis theorem

Ipp = IGG + (bl)

(

l

2

)2

Figure 59.2

i.e.
bl3

3
= IGG +

bl3

4

from which, IGG =
bl3

3
−

bl3

4
=

bl3

12

dx

G

C

x

b

P

GP

2
I

2
I

Figure 59.3

59.4 Perpendicular axis theorem

In Fig. 59.4, axes OX, OY and OZ are mutually perpen-

dicular. If OX and OY lie in the plane of area A then the

perpendicular axis theorem states:

IOZ = IOX + IOY

Figure 59.4

59.5 Summary of derived results

A summary of derive standard results for the sec-

ond moment of area and radius of gyration of regular

sections are listed in Table 59.1.

Table 59.1 Summary of standard results of the sec-

ond moments of areas of regular sections

Shape Position of axis Second Radius of

moment gyration, k

of area, I

Rectangle (1) Coinciding with b
bl3

3

l
√

3
length l

breadth b (2) Coinciding with l
lb3

3

b
√

3

(3) Through centroid,
bl3

l2

l
√

12parallel to b

(4) Through centroid,
lb3

12

b
√

12parallel to l

Triangle (1) Coinciding with b
bh3

12

h
√

6Perpendicular

height h
(2) Through centroid,

bh3

36

h
√

18base b
parallel to base

(3) Through vertex,
bh3

4

h
√

2parallel to base

Circle (1) Through centre,
πr4

2

r
√

2radius r perpendicular

to plane (i.e.

polar axis)

(2) Coinciding
πr4

4

r

2
with diameter

(3) About a tangent
5πr4

4

√
5

2
r

Semicircle Coinciding
πr4

8

r

2
radius r with diameter
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59.6 Worked problems on second
moments of area of regular
sections

Problem 1. Determine the second moment of

area and the radius of gyration about axes AA, BB

and CC for the rectangle shown in Fig. 59.5.

A

C

B

C

b ! 4.0 cm

B
A

l !12.0 cm

Figure 59.5

From Table 59.1, the second moment of area about axis

AA, IAA =
bl3

3
=

(4.0)(12.0)3

3
= 2304 cm4

Radius of gyration,

kAA =
l

√
3

=
12.0
√

3
= 6.93 cm

Similarly, IBB =
lb3

3
=

(12.0)(4.0)3

3
= 256 cm4

and kBB =
b

√
3

=
4.0
√

3
= 2.31 cm

The second moment of area about the centroid of a

rectangle is
bl3

12
when the axis through the centroid is

parallel with the breadth, b. In this case, the axis CC is

parallel with the length l.

Hence ICC =
lb3

12
=

(12.0)(4.0)3

12
= 64 cm4

and kCC =
b

√
12

=
4.0
√

12
= 1.15 cm

Problem 2. Find the second moment of area and

the radius of gyration about axis PP for the

rectangle shown in Fig. 59.6

40.0 mm

15.0 mm

25.0 mm

G G

P P

Figure 59.6

IGG =
lb3

12
where l = 40.0 mm and b = 15.0 mm

Hence IGG =
(40.0)(15.0)3

12
= 11 250 mm4

From the parallel axis theorem, IPP = IGG + Ad2,

where A = 40.0 × 15.0 = 600 mm2 and d = 25.0 +
7.5 = 32.5 mm, the perpendicular distance between

GG and PP.

Hence, IPP = 11 250 + (600)(32.5)2

= 645 000 mm4

IPP = Ak2
PP

from which, kPP =
√

IPP

area

=
√

645 000

600
= 32.79 mm

Problem 3. Determine the second moment of

area and radius of gyration about axis QQ of the

triangle BCD shown in Fig. 59.7

12.0 cm

8.0 cm 6.0 cm

B

G

DC

Q Q

G

Figure 59.7

Using the parallel axis theorem: IQQ = IGG + Ad2,

where IGG is the second moment of area about the

centroid of the triangle,

i.e.
bh3

36
=

(8.0)(12.0)3

36
= 384 cm4, A is the area of

the triangle = 1
2
bh = 1

2
(8.0)(12.0) = 48 cm2 and d is the

distance between axes GG and QQ = 6.0 + 1
3
(12.0) =

10 cm.

Hence the second moment of area about axis QQ,

IQQ = 384 + (48)(10)2 = 5184 cm4

Radius of gyration,

kQQ =
√

IQQ

area
=

√

5184

48
= 10.4 cm
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Problem 4. Determine the second moment of

area and radius of gyration of the circle shown in

Fig. 59.8 about axis YY

3.0 cm

G G

r ! 2.0 cm

Y Y

Figure 59.8

In Fig. 59.8, IGG =
πr4

4
=

π

4
(2.0)4 = 4π cm4. Using

the parallel axis theorem, IYY = IGG + Ad2, where

d = 3.0 + 2.0 = 5.0 cm.

Hence IYY = 4π + [π(2.0)2](5.0)2

= 4π + 100π = 104π = 327 cm4

Radius of gyration,

kYY =
√

IYY

area
=

√

104π

π(2.0)2
=

√
26 = 5.10 cm

Problem 5. Determine the second moment of

area and radius of gyration for the semicircle shown

in Fig. 59.9 about axis XX

15.0 mm

10.0 mmG

B

G

B

XX

Figure 59.9

The centroid of a semicircle lies at
4r

3π
from its diameter.

Using the parallel axis theorem: IBB = IGG + Ad2,

where IBB =
πr4

8
(from Table 59.1)

=
π(10.0)4

8
= 3927 mm4,

A =
πr2

2
=

π(10.0)2

2
= 157.1 mm2

and d =
4r

3π
=

4(10.0)

3π
= 4.244 mm

Hence 3927 = IGG + (157.1)(4.244)2

i.e. 3927 = IGG + 2830,

from which, IGG = 3927 − 2830 = 1097 mm4

Using the parallel axis theorem again:

IXX = IGG + A(15.0 + 4.244)2

i.e. IXX = 1097 + (157.1)(19.244)2

= 1097 + 58 179 = 59 276 mm4 or 59 280 mm4, cor-

rect to 4 significant figures.

Radius of gyration, kXX =
√

IXX

area
=

√

59 276

157.1

= 19.42 mm

Problem 6. Determine the polar second moment

of area of the propeller shaft cross-section shown in

Fig. 59.10
7
.0

 c
m

6
.0

 c
m

Figure 59.10

The polar second moment of area of a circle =
πr4

2
.

The polar second moment of area of the shaded area is

given by the polar second moment of area of the 7.0 cm

diameter circle minus the polar second moment of area

of the 6.0 cm diameter circle. Hence the polar second
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moment of area of the

cross-section shown =
π

2

(

7.0

2

)4

−
π

2

(

6.0

2

)4

= 235.7 − 127.2 = 108.5 cm4

Problem 7. Determine the second moment of

area and radius of gyration of a rectangular lamina

of length 40 mm and width 15 mm about an axis

through one corner, perpendicular to the plane of

the lamina

The lamina is shown in Fig. 59.11.

Y

Y Z

X
b ! 15 mm

I !
 40 mm

Z

X

Figure 59.11

From the perpendicular axis theorem:

IZZ = IXX + IYY

IXX =
lb3

3
=

(40)(15)3

3
= 45 000 mm4

and IYY =
bl3

3
=

(15)(40)3

3
= 320 000 mm4

Hence IZZ = 45 000 + 320 000

= 365 000 mm4 or 36.5 cm4

Radius of gyration,

kZZ =
√

IZZ

area
=

√

365 000

(40)(15)

= 24.7 mm or 2.47 cm

Now try the following exercise

Exercise 201 Further problems on second

moments of area of regular

sections

1. Determine the second moment of area and

radius of gyration for the rectangle shown in

Fig. 59.12 about (a) axis AA (b) axis BB, and

(c) axis CC.




(a) 72 cm4, 1.73 cm

(b) 128 cm4, 2.31 cm

(c) 512 cm4, 4.62 cm





A A

B

B

C

3.0 cm

C

8.0 cm

Figure 59.12

2. Determine the second moment of area and

radius of gyration for the triangle shown in

Fig. 59.13 about (a) axis DD (b) axis EE, and

(c) an axis through the centroid of the triangle

parallel to axis DD.




(a) 729 cm4, 3.67 cm

(b) 2187 cm4, 6.36 cm

(c) 243 cm4, 2.12 cm





12.0 cm

9.0 cm

E

D D

E

Figure 59.13

3. For the circle shown in Fig. 59.14, find the

second moment of area and radius of gyration

about (a) axis FF, and (b) axis HH.
[

(a) 201 cm4, 2.0 cm

(b) 1005 cm4, 4.47 cm

]

H

F F

H

r 
!

 4
.0

cm

Figure 59.14

4. For the semicircle shown in Fig. 59.15, find the

second moment of area and radius of gyration

about axis JJ. [3927 mm4, 5.0 mm]
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JJ

r 
!

 1
0
.0

m
m

Figure 59.15

5. For each of the areas shown in Fig. 59.16 deter-

mine the second moment of area and radius of

gyration about axis LL, by using the parallel

axis theorem.




(a) 335 cm4, 4.73 cm

(b) 22 030 cm4, 14.3 cm

(c) 628 cm4, 7.07 cm





5.0 cm

3.0 cm

2.0 cm
10 cm

(a) (b) (c)

15 cm 15 cm

5 cm18 cm

L L

Dia=4.0 cm

Figure 59.16

6. Calculate the radius of gyration of a rectan-

gular door 2.0 m high by 1.5 m wide about a

vertical axis through its hinge. [0.866 m]

7. A circular door of a boiler is hinged so that

it turns about a tangent. If its diameter is

1.0 m, determine its second moment of area

and radius of gyration about the hinge.

[0.245 m4, 0.599 m]

8. A circular cover, centre 0, has a radius of

12.0 cm. A hole of radius 4.0 cm and centre X,

where OX = 6.0 cm, is cut in the cover. Deter-

mine the second moment of area and the radius

of gyration of the remainder about a diameter

through 0 perpendicular to OX.

[14 280 cm4, 5.96 cm]

59.7 Worked problems on second
moments of area of composite
areas

Problem 8. Determine correct to 3 significant

figures, the second moment of area about XX for

the composite area shown in Fig. 59.17

1.0 cm

8.0 cm

6.0 cm

2.0 cm

4.
0 

cm

1.0 cm

2.0 cm

CT

TT

XX

Figure 59.17

For the semicircle, IXX =
πr4

8
=

π(4.0)4

8

= 100.5 cm4

For the rectangle, IXX =
bl3

3
=

(6.0)(8.0)3

3

= 1024 cm4

For the triangle, about axis TT through centroid CT ,

ITT =
bh3

36
=

(10)(6.0)3

36
= 60 cm4

By the parallel axis theorem, the second moment of area

of the triangle about axis XX

= 60 +
[

1
2
(10)(6.0)

] [

8.0 + 1
3
(6.0)

]2 = 3060 cm4.

Total second moment of area about XX.

= 100.5 + 1024 + 3060 = 4184.5 = 4180 cm4, correct

to 3 significant figures

Problem 9. Determine the second moment of

area and the radius of gyration about axis XX for

the I-section shown in Fig. 59.18

3.0 cm

4.0 cm

7.0 cm

3.0 cm

8.0 cm

S

S

CD

CE

CF

CC

y

XX 15.0 cm

Figure 59.18
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The I-section is divided into three rectangles, D, E

and F and their centroids denoted by CD, CE andCF

respectively.

For rectangle D:

The second moment of area about CD (an axis through

CD parallel to XX)

=
bl3

12
=

(8.0)(3.0)3

12
= 18 cm4

Using the parallel axis theorem: IXX = 18 + Ad2 where

A = (8.0)(3.0) = 24 cm2 and d = 12.5 cm

Hence IXX = 18 + 24(12.5)2 = 3768 cm4

For rectangle E:

The second moment of area about CE (an axis through

CE parallel to XX)

=
bl3

12
=

(3.0)(7.0)3

12
= 85.75 cm4

Using the parallel axis theorem:

IXX = 85.75 + (7.0)(3.0)(7.5)2 = 1267 cm4

For rectangle F:

IXX =
bl3

3
=

(15.0)(4.0)3

3
= 320 cm4

Total second moment of area for the I-section about

axis XX,

IXX = 3768 + 1267 + 320 = 5355 cm4

Total area of I-section

= (8.0)(3.0) + (3.0)(7.0) + (15.0)(4.0) = 105 cm2.

Radius of gyration,

kXX =
√

IXX

area
=

√

5355

105
= 7.14 cm

Now try the following exercise

Exercise 202 Further problems on section

moment of areas of composite

areas

1. For the sections shown in Fig. 59.19, find

the second moment of area and the radius of

gyration about axis XX.
[

(a) 12 190 mm4, 10.9 mm

(b) 549.5 cm4, 4.18 cm

]

X 4.0 mm

12.0 mm

3.0 mm

18.0 mm

2.5 cm

2.0 cm

6.0 cm

3.0 cm

2.0 cm

(a) (b)

X

X X

Figure 59.19

2. Determine the second moment of area about

the given axes for the shapes shown in

Fig. 59.20. (In Fig. 59.20(b), the circular area

is removed.)
[

IAA = 4224 cm4, IBB = 6718 cm4,

ICC = 37 300 cm4

]

(a) (b)

3.0 cm

9.0 cm

4.0 cm

16.0 cm

A A

9.0 cm

Dia  
 7.0 cm

15.0 cm

10.0 cm

4.5 cm
B

C

B

C

Figure 59.20

3. Find the second moment of area and radius of

gyration about the axis XX for the beam section

shown in Fig. 59.21. [1350 cm4, 5.67 cm]

6.0 cm

2.0 cm

1.0 cm

8.0 cm

2.0 cm

X X
10.0 cm

Figure 59.21
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Revision Test 16

This Revision test covers the material contained in Chapters 55 to 59. The marks for each question are shown in

brackets at the end of each question.

1. The force F newtons acting on a body at a dis-

tance x metres from a fixed point is given by:

F = 2x + 3x2. If work done =
∫ x2

x1
F dx, deter-

mine the work done when the body moves from

the position when x = 1 m to that when x = 4 m.

(4)

2. Sketch and determine the area enclosed by the

curve y = 3 sin
θ

2
, the θ-axis and ordinates θ = 0

and θ =
2π

3
. (4)

3. Calculate the area between the curve

y = x3 − x2 − 6x and the x-axis. (10)

4. A voltage v = 25 sin 50πt volts is applied across

an electrical circuit. Determine, using integration,

its mean and r.m.s. values over the range t = 0 to

t = 20 ms, each correct to 4 significant figures.

(12)

5. Sketch on the same axes the curves x2 = 2y and

y2 = 16x and determine the co-ordinates of the

points of intersection. Determine (a) the area

enclosed by the curves, and (b) the volume of the

solid produced if the area is rotated one revolution

about the x-axis. (13)

6. Calculate the position of the centroid of the sheet

of metal formed by the x-axis and the part of the

curve y = 5x − x2 which lies above the x-axis.

(9)

7. A cylindrical pillar of diameter 500 mm has a

groove cut around its circumference as shown in

Fig. R16.1. The section of the groove is a semicir-

cle of diameter 40 mm. Given that the centroid of

a semicircle from its base is
4r

3π
, use the theorem

40 mm

250 mm

500 mm

Figure R16.1

of Pappus to determine the volume of material

removed, in cm3, correct to 3 significant figures.

(8)

8. For each of the areas shown in Fig. R16.2 deter-

mine the second moment of area and radius of

gyration about axis XX. (15)

70 mm

48 mm

25 mm 4.0 cm

DIA = 5.0 cm

15.0 mm 15.0 mm

18.0 mm

5.0 mm

X X

(a) (b) (c)

Figure R16.2

9. A circular door is hinged so that it turns about a

tangent. If its diameter is 1.0 m find its second

moment of area and radius of gyration about the

hinge. (5)


