

Practises

Fieldwork 1 (1a-1b):Horizontal distance measurement by the method of taping.
Fieldwork 2:Surveys of small areas and buildings by the method of intersecting arcs
Fieldwork 3:Making contour map of a small area by intersecting arcs and differential leveling
\checkmark Phase 1:Horizontal position fixing of contour points by intersecting arcs.
\checkmark Phase 1a:Two-peg test
\checkmark Phase 2:Vertical position fixing of contour points by intersecting arcs.
Fieldwork 4:Making contour map by tacheometric method.
\checkmark Phase 1:Finding the coordinates of reference points by traversing.
\checkmark Phase 2:Contour by tacheometer.

FIELDWORK 1

FIELDWORK 3

PHASE 1

\checkmark Divide the Ataturk Koru into places (small area with minimum dimensions $40 \times 40 \mathrm{~m}$.
\checkmark Each piece is the working area for one subgroup. Subgroups of a main group should be in neighborhood.
\checkmark Each subgroup should establish at least 4 reference points as a frame. These points must be protected in their locations on the ground till the end of the course.
\checkmark Neighboring subgroups must have at least two common reference points.
\checkmark Neighbor pieces must have an overlapped area approximately 10 m . width.
\checkmark Each subgroup should mark contour points max. 8 m apart from each other. These points should be Iprotected in their locations on the ground until finishing fieldwork 3. (you need iron stakes for points in the field!!) - totally 40 points.

FIELDWORK 3
PHASE 1-a

Collimation Error $\rightarrow e=$ difference in the differences Acceptable error: 1 mm per 20 m

FIELDWORK 3

PHASE 2

\checkmark We will show you a point in the field, and give its elevation \checkmark We do not have enough leveling instruments so you will work turn.
\checkmark You may arrange the turns of subgroups by yourself.
\checkmark It is your responsibility to keep your instruments.
\checkmark You as a subgroup must show us your reference and contour points in the field before you begin leveling operation.
$\checkmark 0.5 \mathrm{~m}$. < Working range at leveling < 20 m
\checkmark Acceptable errors:
For Check Points \rightarrow max. 3 cm
For Field Loop $\rightarrow \max .1 \mathrm{~cm}$.
\checkmark You must bring us raw data at every step !!!
\checkmark Take measurements, calculate the height of points by level book, draw a plan with contour lines, bring us report and plan of phase II.

Fieldwork 4, Phase 1: Finding the coordinates of reference points by traversing.

- Each subgroup will take the reference points as traverse points and form a closed traverse.
- Make necessary measurements and calculate the X,Y coordinates. (horizontal distances and horizontal angles in two ways as three sets).
- Take $1100.00,1100.00 \mathrm{~m}$ (for subgroup 1.1) for the coordinates of one of your reference point.
- Estimate the azimuth of the leg of your traverse, starting from the point with the given coordinates
- Make your calculations and balance your misclosures.

Fieldwork 4, Phase 2: Contours by tacheometer
Draw another plan of your own field with contour lines by applying tacheometric method.

- Bring us
\checkmark Measurements of your traverse.
\checkmark Calculation of your traverse.

\checkmark A sketch showing traverse points and legs, approximate locations of points and their numbers.
\checkmark Tacheometric fieldbook.
(Use the coordinates of traverse calculation.)
\checkmark Plan with the same scale of previous plan.
\checkmark Report the center. To do this you can use legs of the tripod by changing the heights. Tubular bubble is brought to the middle using the foot screws. The instrument must exactly be over the reference (traverse=station) point.

Rod \& Tripods / Theodolite \& Tripod important for phase 1
Phase II: Tacheometry
Tape \& Staff / Theodolite \& Tripod $\}$ measured for phase 2

* Your reference points form a traverse. The instrument is set at a reference point and aimed to another reference point
* Angular measurements (vertical and horizontal angles) are read at face I and face II, for 3 sets.
* For 3 sets and 2 target points: $4009 / 3^{*} 2=669$

So Set I:09, Set II:669, Set III:1329

Fieldwork 5

- Choose a vertical line segment with an approximate length of $7-10 \mathrm{~m}$.
- Mark three points around forming 2 triangles with a common side.
- The length of sides should be 40 m approximately.
- Make necessary measurements. (3 sets of vertical angle, 3 sets of horizontal angle, distance measurement in two ways)
- Calculate the length of vertical line segment.

You will give us:

\checkmark Definition of the problem (one copy for each subgroup)
\checkmark Proof for the formula given
\checkmark Results of measurements made (one copy for each subgroup) and average of your measurements
\checkmark Sketch (showing surrounding buildings)
\checkmark Report

