Diode Switching Circuits

Basic Concepts

Diode switching circuits typically contain two or more diodes, each of which is connected to an independent voltage source. Understanding the operation of a diode switching circuits depends on determining which diodes, if any, are forward biased and which, if any, are reverse biased. The key to this determination is remembering that a diode is forward biased only if it's anode is positive with respect to it's cathode (see Fig. 2-1). One of the very important applications of diode switching circuits is logic gates .

Fig. 2-1

Logic Gates:

Diode can be used to form logic gates, which perform some of logic operations required in digital computers

OR Gate:

It has output when there a signal in any input channels (see Fig. 2-2).

Input voltage		State of diodes		Output voltage
V_{A}	V_{B}	D_{1}	D_{2}	V_{0}
0	0	off	off	0
0	1	off	on	1
1	0	on	off	1
1	1	on	on	1

Fig. 2-2

AND Gate:

It has output only when all inputs are present (see Fig. 2-3).

Input voltage	State of diodes	Output

				voltage
V_{A}	V_{B}	D_{1}	D_{2}	V_{0}
0	0	on	on	0
0	1	on	off	0
1	0	off	on	0
1	1	off	off	1

Fig. 2-3

Example 2-1:

Determine which diodes are forward biased and which are reverse biased in the circuit shown in Fig. 2-4. Assuming a $0.7-\mathrm{V}$ drop across each forward-biased diode, determine the output voltage

Fig. 2-4

Solution:

In (a) the net forward-biasing voltage between supply and input for each diode is $D_{1} \circ D_{3}: \square 5$ - ?

$$
D_{2}{ }^{\circ} D_{4}: \boxminus 5-\text { 冒-50 (} 10 \mathrm{~V}
$$

Therefore, $D_{2}{ }^{\circ} D_{4}$ are forward biased and $D_{1}{ }^{\circ} D_{3}$ are reverse biased.

$$
V, \mathbf{R}-5 \risingdotseq 0.7 \mathbf{F}-4.3 \mathrm{~V} .
$$

While in (b) the net forward-biasing voltage between supply and input for each diode is

$$
D_{1}: \equiv 15-\frac{R}{\square} \equiv 50 \square 15 \mathrm{~V},
$$

$$
D_{2}: Ð 15-0 \square 15 \mathrm{~V},
$$

$$
D_{3}: 15-\frac{2}{\square}-100 \text { ■ } 25 \mathrm{~V} .
$$

Therefore，D_{3} is forward biased and $D_{1} \square D_{2}$ are reverse biased．

Finally，in（c）the net forward－biasing voltage between supply and input for each diode is

Therefore，D_{2} is forward biased and D_{1} is reverse biased．

$$
V_{\mathrm{N}} \boldsymbol{\mathrm { F }} \equiv 5-0.7 \boldsymbol{\mathrm { F }} \risingdotseq 4.3 \mathrm{~V} .
$$

Exercises：

Determine V_{0} and I for each circuit in Fig．2－5．Assume that each diodes in these circuits has a forward voltage drop of 0.7 v ．

（a）

（b）

（c）

$$
\begin{aligned}
& D_{1} \text { :-5-冒-100国5 }
\end{aligned}
$$

1. No pulses at either A or B
2. A 30 V positive pulse at A or B and
3. Positive pulses (30V) at both A and B.
(e)
