lecture Two by: Abdulgaffar S.

Diode Switching Circuits

:Basic Concepts

Diode switching circuits typically contain two or more diodes, each of which is connected to an independent voltage source. Understanding the operation of a diode switching circuits depends on determining which diodes, if any , are forward biased and which, if any, are reverse biased. The key to this determination is remembering that *a diode is forward biased only if it's anode is positive with respect to it's cathode* (see Fig. 2-1). One of the very important applications of diode switching circuits is logic gates .

Fig. 2-1 Fig.

Diode can be used to form logic gates, which perform some of logic operations required in digital computers

OR Gate:

It has output when there a signal in any input channels (see Fig. 2-2).

7	Input voltage		State of diodes		Output voltage		
• V _a	V _A	V _B	D_1	D_2	V 。		
<i>₹R</i>	0	0	off	off	0		
÷	0	1	off	on	1		
	1	0	on	off	1		
	1	1	on	on	1		
Fig. 2-2							

AND Gate:

It has output only when all inputs are present (see Fig. 2-3).

University of Thi-Qar Electrical and Electronic Engineering Department Second year, Electronic 1, 2016-2017 M

lecture Two by: Abdulgaffar S.

				voltage
V_A	V_{B}	D_1	D_2	V_{\circ}
0	0	on	on	0
0	1	on	on off	0
1	0	off	on	0
1	1	off	on off	1
	Fig 23			

Example 2-1:

Determine which diodes are forward biased and which are reverse biased in the circuit shown in Fig. 2-4. Assuming a 0.7-V drop across each forward-biased diode, determine the output voltage V_{\circ} .

Solution:

In (a) the net forward-biasing voltage between supply and input for each diode is

 $D_1 \circ D_3 : = 5 - 2 = 5$

 $D_2 \circ D_4 : = 5 - 2 - 5 0 = 10 V$

Therefore, $D_2 \circ D_4$ are forward biased and $D_1 \circ D_3$ are reverse biased.

$$V_{\circ} = -5 = 0.7 = -4.3 V$$
.

While in (b) the net forward-biasing voltage between supply and input for each diode is

 $D_1:=15-2=50=15V$,

University of Thi-Qar Electrical and Electronic Engineering Department Second year, Electronic 1, 2016-2017 M

lecture Two by: Abdulgaffar S.

 $D_2:=15-0$ = 15V ,

 $D_3:=15-25V.$

Therefore, D_3 is forward biased and $D_1 \square D_2$ are reverse biased.

 $V_{\circ} = -10 = 0.7 = -9.3 V$.

Finally, in(c) the net forward-biasing voltage between supply and input for each diode is

 $D_1:-5-2-10$

 $D_2:=5-2-10$ $D_2:=5V$.

Therefore, D_2 is forward biased and D_1 is reverse biased. V_{\circ} I = 5 - 0.7 I = 4.3V.

Exercises:

Determine V_{\circ} and *I* for each circuit in Fig. 2-5. Assume that each diodes in these circuits has a forward voltage drop of 0.7 v.

University of Thi-Qar Electrical and Electronic Engineering Department Second year, Electronic 1, 2016-2017 M

lecture Two by: Abdulgaffar S.

