Bias Stabilization

：Rasic Iofinitions

The stability of system is a measure of sensitivity of a circuit to variations in its parameters．In any amplifier employing a transistor the collector current Ic is sensitive
to each of the following parameter．
－Ico（reverse saturation current）：aloubles in walue for every I DoC increase in temperature
－｜Vhe｜（base－to－emitter voltage）：decrease about 7.5 mV per IoC increase in temperature．
－β（formard current gain）：increase with increase in temperature．

Any or all of these factors can cause the bias point to drift from the design point of operation．

Stahility factors，S［leol，S［1 Bu，and S［B］：

A stability factor，S ，is defined for each of the parameters affecting bias stability as listed below：

$$
\begin{equation*}
S \text { 冒 } I_{C O} @ \square \frac{\Delta I_{C}}{\Delta I_{C O}} \mathbf{\square} \frac{\partial I_{C}}{\partial I_{C O}} V_{B E}, \beta \mathbf{\square} \text { const. } \tag{10.1a}
\end{equation*}
$$

$$
\begin{equation*}
S \text { 冒 } V_{B E} \bigcup \boldsymbol{f} \frac{\Delta I_{C}}{\Delta V_{B E}} \boldsymbol{\square} \frac{\partial I_{C}}{\partial V_{B E}} V_{B E}, \beta \text { П const. } \tag{10.1b}
\end{equation*}
$$

$$
\begin{equation*}
S \text { 会 } \beta \emptyset \boldsymbol{\nabla} \frac{\Delta I_{C}}{\Delta \beta} \frac{\partial I_{C}}{\partial \beta} V_{B E}, I_{C O} \mathbf{Z} \text { const } . \tag{10.1c}
\end{equation*}
$$

Generally，networks that are quite stable and relatively insensitive to temperature variations have low stability factors．In some ways it would seem more appropriate to consider the quantities defined by Eqs．［10．1a－10．1c］to be sensitivity factors because：
the higher the stability factor, the more sensitive the network to variations in that parameter.
The total effect on the collector current can be determined using the following equation:

Derivation of Stability factors for Standari bias Hirculis：

For the valtage－divider bias circuit，the exact analysis（using Thevenin theorem） for the ：input（base－emitter）loop will result in

$$
E_{T h}-I_{B} R_{B}-V_{B E}-I_{E} R_{E} \text { IT } 0
$$

$$
\text { (1) } I_{E} \text { (} I_{c} \sqsubseteq I_{B}
$$

$$
\left.I_{c} R_{E} \sqsubseteq I_{B} \text { 冒 } R_{E} \sqsupseteq R_{T h}\right) \sqsupseteq V_{B E} \text { 位 } E_{T h}
$$

（c）I_{c} 『 $\beta I_{B} \equiv$ 苗 $\beta \boxminus 10 I_{c o}$,
（1）I_{B} П $\frac{I_{c}}{\beta}-\frac{\beta \sqsubseteq 1}{\beta} I_{c o} \Rightarrow$

The partial derivation of the Eq．［10．3］with respect to $I_{C O}$ will result：

$$
\frac{\partial I_{C}}{\partial I_{C O}} \cdot \frac{\text { 冒 } \beta \sqsubseteq 10 R_{E} \risingdotseq R_{T h}}{\beta}-\frac{\text { 官 } \beta \risingdotseq 10 R_{E} \sqsubseteq R_{\text {Th }}}{\beta} \mathbf{T} 0
$$

Also，the partial derivation of the Eq．［10．3］with respect to $V_{B E}$ will result：

$$
\frac{\partial I_{C}}{\partial V_{B E}} \cdot \frac{\text { 官 } \beta \boxminus 10 R_{E} \sqsubseteq R_{T h}}{\beta} \boxminus 1 \text { 『l } 0
$$

$$
S \text { 冒 } V_{B E} \text { П } \frac{-\beta}{\text { 冒 } \beta \sqsubseteq 10 R_{E} \sqsubseteq R_{T h}}
$$

[10.4b]

The mathematical development of the last stability factor $S(\beta)$ is more complex than encountered for $S\left(I_{C O}\right)$ and $S\left(V_{B E}\right)$. Thus, $S(\beta)$ is suggested by the following equation:

[10.4c]

For the emitter－stabilized bias circuit，the stability factors are the same as these obtained above for the voltage－divider bias circuit except that $R_{T h}$ will replaced by R_{B} ． These are：

$$
\begin{align*}
& S \text { 角 } I_{C O} \text { (} \tag{10.5a}
\end{align*}
$$

$$
\begin{aligned}
& \text { [10.5b] }
\end{aligned}
$$

For the fixed－bias cireuit，if we plug in $R_{E}=0$ the following equation will result：

$$
\begin{equation*}
S \text { 冒 } V_{B E} \emptyset \boldsymbol{\square} \frac{-\beta}{R_{B}} \tag{10.6b}
\end{equation*}
$$

$$
s \boldsymbol{Q} \beta\rangle \begin{align*}
& \boldsymbol{I}_{C 1} \tag{10.6c}\\
& \beta_{1}
\end{align*}
$$

Finally，for the case of the woltage－feedback bias cireuit，the following equation will result：

$$
S_{\text {分 }} I_{C O} \text { (I) }
$$

$$
\begin{equation*}
\left.S \text { 臽 } V_{B E}\right\} \boldsymbol{\mathrm { F }} \frac{-\beta}{(\mathcal{A})} \tag{10.7b}
\end{equation*}
$$

[10.7c]

3xamile 10-1:

1. Design a voltage-divider bias circuit using a $V_{C C}$ supply of +18 V , and an npn silicon transistor with β of 80 . Choose $R_{C}=5 R_{E}$, and set I_{C} at 1 mA and the stability factor $S\left(I_{C O}\right)$ at 3.8 .
2. For the circuit designed in part (1), determine the change in I_{C} if a change in operating conditions results in $I_{C O}$ increasing from 0.2 to $10 \mu \mathrm{~A}, V_{B E}$ drops from 0.7 to 0.5 V , and β increases 25%.
3. Calculate the change in I_{C} from 25 o to $75 \circ \mathrm{C}$ for the same circuit designed in part (1), if $I_{C O}=0.2 \mu \mathrm{~A}$ and $V_{B E}=0.7 \mathrm{~V}$.

Solution:

Part 1:

R_{C} (T苗 1.5 k 0 ($7.5 \mathrm{k} \Omega$.

[10.8a]

Fig. 10-1

$R_{T h} \boldsymbol{\Pi} \frac{R_{1} R_{2}}{R_{1} \triangleq R_{2}} \Rightarrow \frac{R_{2}}{R_{1} \triangleq R_{2}}$? $\frac{R_{T h}}{R_{1}} \boldsymbol{\Pi} \frac{4.4 k}{R_{1}}$

From Eqs. [10.8a] and [10.8b]:

$$
\frac{4.4 k}{R_{1}} \frac{2.2}{18} \Rightarrow R_{1} \operatorname{Ti} 36 \Omega .
$$

From Eq．［10．8a］：

$$
\frac{R_{2}}{36 k \boxminus R_{2}} \frac{2.2}{18} \Rightarrow R_{2} \text { I } 5 \mathrm{k} \Omega
$$

Fig．10－1 shows the final circuit．

Part 2：

S 冒 $I_{C O}$ ？ 3.8 ，
$\Delta I_{C O} \mathbf{\square} 10 \mu-0.2 \mu \mathbf{T} 9.8 \mu A$

$\Delta V_{B E}$（ $0.5-0.7 \mathbf{T}-0.2 V$.

$$
\begin{gathered}
R \\
1 m
\end{gathered}
$$

$$
\begin{aligned}
& s \text { 会 } \beta \text {) }
\end{aligned}
$$

$\Delta \beta$（100－80 20.

Part 3：

Since $I C O$ ，doubles in value for every $10_{\mathrm{o}} \mathrm{C}$ increase in temperature．

$$
\Delta I_{C O} 6.4 \mu-0.2 \mu \mathbf{T} 6.2 \mu A
$$

Since $V_{B E}$ ，decreases about 7.5 mV per $1_{\circ} \mathrm{C}$ increase in temperature．
Thus ΔT 75－25 $50^{\circ} \mathrm{C}, V_{B E}$ 冒 $25^{\circ} \mathrm{C} 0$（ 0.7 V ．

$$
\left.V_{B E} \text { 苗 } 75^{\circ} \mathrm{C} 0 \text { 国 } 0.7-50 \text { 苗 } 7.5 \mathrm{~m}\right) \mathbf{(1)} 0.325 \mathrm{~V} .
$$

Techniques of stabilizations：

1．Stabilization technique，these use sensitive biasing circuits which allows I_{B} to vary so as to keep I_{C} relating constant with variation in $I_{C O}, \beta, \square V_{B E}$

2．Compensation techniques：These use temperature sensitive devices like diodes， transistor，thermistor for providing compensating voltage and current to maintain Q－point constant．

Bias stabilization techniques：

1－Fixed－Bias circuit．

fixed－bias circuit

DC－equivalent of fixed－

$$
V_{C C}-I_{B} R_{B}-V_{B E} \text { / } 0
$$

$$
I_{B} \cap \frac{V_{C C}-V_{B E}}{R_{B}}
$$

$I_{C} \boldsymbol{\nabla} \beta I_{B}$
$V_{C E} \square_{C} I_{C} R_{C}-V_{C C} \mathbf{\square} 0$

$$
V_{C E} \text { 『} V_{C C}-I_{C} R_{C}
$$

$$
\therefore V_{C E} \text { (} V_{C C}
$$

In addition since $V_{B E} \boldsymbol{\square} V_{B}-V_{E} \Longrightarrow V_{B E} \boldsymbol{\square} V_{B}$

Note：

$I_{E} \mathbf{\square} I_{C} \equiv I_{B}, I_{C}$ 目 βI_{B}
I_{E} 至 1 ® β（1）I_{B}
I_{E} 目 I_{C}

Example：

Determine the following for the fixed－bias configuration of Fig．below．
a）$I_{B Q} \square I_{C Q}$
b）$V_{C E Q}$
c）$V_{B} a n a V_{C}$
d）$V_{B C}$

Solution：

a）$I_{B Q}$ П $\frac{V_{C C}-V_{B E}}{R_{B}}$ П $\frac{12-0.7}{240 k} \mathbf{~} 47.08 \mathrm{~mA}$ ．
$I_{C Q} \beta I_{B}$（ 50 冒 $47.08 \mu A$（ 12.35 mA.
b）$V_{C E Q}=V_{C C}-I_{C} R_{C}$
（ㄱ）12－苗2．35mA）空2．2k（9）
（4） 6.83 V

The negative sign revealing the junction is reversed biased as it should be for linear amplification．

$$
\begin{aligned}
& V_{C E} V_{C C}-I_{C} R_{C} \\
& \text { but } V_{C E} \mathbf{\square} 0 \\
& I_{C} \text { ato } \frac{V_{C C}}{R_{C}} \text {, at } V_{C E} \mathbf{\square} 0 \\
& V_{C E} \text { ? } V_{C C}-I_{C} R_{C} \\
& V_{C E} V_{C C}, \text { at } I_{C} 0
\end{aligned}
$$

2－Emitter－Stabilized Bias circuit．

$$
I_{E} \cong I_{C}
$$

$$
\begin{aligned}
& V_{E} I_{E} R_{E} \\
& V_{C E} V_{C}-V_{E} \square V_{C} V_{C E}^{\square} V_{E}
\end{aligned}
$$

$$
\therefore V_{C E} V_{C C}-I_{C} R_{C}
$$

$$
V_{B} \mathbf{T} V_{B E} \boxminus V_{E}
$$

$$
V_{B} \boldsymbol{T} V_{C C}-I_{B} R_{B}
$$

$$
\begin{aligned}
& V_{C C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E} \text { (l } 0 \\
& I_{E} \text { (盆 } \beta \text { 『 } 1 \text { (D) } I_{B}
\end{aligned}
$$

Second year, Electronic i, 2016-2017

Example：

Determine the following for the emitter－bias configuration of Fig．below．
d］$I_{B} b \oplus I_{C}$
c）$V_{C E}$
d）V_{C}
e）V_{E}
f）V_{B}
g）$V_{B C}$

d］I_{B}（T）$\frac{V_{C C}-V_{B E}}{R_{B}=\text { 葢 } \beta=10 R_{E}}$

$$
\text { (1) } \frac{20-0.7}{430 k \sqsubseteq 51 \square 1 k} \text { ■ } 40.1 \mu A
$$

b）$\quad I_{C}$ 目 βI_{B} 目 50 冒 $40.1 \mu A$ 国 2.01 mA ．
c］

（1） 13.97 V

0］V_{E} 目 $I_{E} R_{E} \cong I_{C} R_{C}$ 苗 2.01 m 0 冒 1 k 0 ？ 2.01 V

Second year, Electronic i, 2016-2017

Or $\quad V_{E}$ 目 $V_{C}-V_{C E}$ 15.98-13.97 $2.01 V$

Saturation Level

The collector saturation level or maximum collector current can be determined by : Apply a short circuit between the collector-emitter terminals .

$$
\begin{gathered}
\begin{array}{c}
R \\
C \oplus \\
C \oplus R_{E} \\
V_{C E} \not \overbrace{\square} V_{C C}-I_{C} \oplus+ \\
I_{\text {sat }} \boldsymbol{\square} \frac{V_{C C}}{R_{C}\left\lceil R_{E}\right.}
\end{array}
\end{gathered}
$$

Load-line analysis

Choosing $I_{C} \mathbf{\square} 0 m A$

$$
V_{C E} \mathbf{T} V_{C C}, \text { at } I_{C} \mathbf{\square} 0
$$

Choosing $\quad V_{C E}$ 目 0
I_{C} П $\frac{V_{C C}}{R_{C} \sqsubseteq \text { 気 } R_{E}}$, at $V_{C E}$ ति

3-Voltage-Divider Bias

$$
R_{T h} \boldsymbol{F} R_{1} \square \oplus R_{2}
$$

$E_{T h} \boldsymbol{\square} V_{R_{2}} \square \frac{R_{2} V_{C C}}{R_{1} R_{2}}$
$E_{T h}-I_{B} R_{T h}-V_{B E}-I_{E} R_{E}$ पl 0

Example :

Determine the dc bias voltage $V_{C E}$ and the current I_{C} for the voltage divider configuration

Solution：
Exact ：

$I_{C Q}$（ βI_{B}（冝 1400 冒 $6.05 \mu 0$（ 0.85 mA

$$
\begin{gathered}
R \\
\stackrel{⿴}{\oplus} \\
C \stackrel{+}{\ominus} \oplus R_{E} \\
V_{C E Q} \oplus \stackrel{\oplus}{\oplus} V_{C C}-I_{C} \oplus+
\end{gathered}
$$

Approximate Analysis：

$$
V_{B} \text { तi } \frac{R_{2} V_{C C}}{R_{1} \boxminus R_{2}} \text { if } R_{i} \text { त亚 } \beta \boxminus 1(1) R_{E} \square \beta R_{E}
$$

then $\beta R_{E} \geq 10 R_{2}$

$$
V_{E} \mathbf{T} V_{B}-V_{B E}
$$

I_{E} П $\frac{V_{E}}{R_{E}}, I_{C Q}$ П $I_{E}, V_{C E Q}$ ？$V_{C C}-I_{C}(\oplus$

Load－Line Analysis：
I_{C} ति $\frac{V_{C C}}{R_{C} \sqsubseteq R_{E}}$ ，at $V_{C E}$ 目 0

$$
V_{C E} \mathbf{T} V_{C C} \text {, at } I_{C} \mathbf{T} 0
$$

Example:

Repeat the analysis of last example .using the approximate technique, and compare solutions $I_{C Q}$ for and $V_{C E Q}$

Solution:

$$
\begin{aligned}
& \text { Testing: } \quad \beta R_{E} \geq 10 R_{2} \\
& (140)(1.5 \mathrm{k}) \geq 10 \text { 응 } 3.9 \mathrm{k}(\text { () }
\end{aligned}
$$

$$
210 k \Omega \odot 39 k \Omega
$$

$$
V_{E} V_{B}-V_{B E} 2-0.7 \mathbf{R} 1.3 \mathrm{~V}
$$

$$
\begin{gathered}
R \\
C \stackrel{\oplus}{\oplus}+\left(R_{E}\right. \\
V_{C E Q} \oplus{ }^{\oplus} V_{C C}-I_{C} \oplus+
\end{gathered}
$$

$$
=12.23 \mathrm{~V}
$$

Home work:
Repeat the exact analysis of example if β 目70 and compare solution for $I_{C Q} \square V_{C E Q}$.

Example:
Determine the levels of $I_{C Q}$ and $V_{C E Q}$ for the voltage-divider configuration using the exact and approximate techniques and compare solutions.

Solution:
Exact analysis

$$
\beta R_{E} \geq 10 R_{2}
$$

(50)(1.2k) ≥ 10 皿 $22 k$ (1)
$60 k \Omega \odot 220 k \Omega$ 皿not satisfied (1)

Approximate Analysis:

$$
V_{B} \text { : } E_{T h} \mathbf{T} 3.81 \mathrm{~V}
$$

$$
V_{E} \text { ? } V_{B}-V_{B E} \text { ती } 3.81-0.7 \mathbf{T} 3.11 \mathrm{~V}
$$

$$
I_{C Q} \mathbf{R} I_{E} \frac{V_{E}}{R_{E}} \boldsymbol{f} \frac{3.11}{1.2 \mathrm{k}} \mathbf{\square} 2.59 \mathrm{~mA}
$$

R

 $V_{C E Q} \mathbf{T} V_{C C}-I_{C}$ (1)

Tabulating the results, we have:

	$I_{C Q}$	$V_{C E Q}$	
Exact	1.98		4.
Approximate	2.59	54	
		88	3.

DC Bias with Voltage Feedback:

\square

$$
I_{E} R_{E} \boxminus V_{C E} \boxminus I_{C} R_{C}-V_{C C} \mathbf{l} 0
$$

$$
\stackrel{\diamond}{\stackrel{ }{2}}
$$

$$
I_{C} I_{E} \cong I_{C}
$$

$$
\begin{gathered}
R \\
\oplus+\oplus \\
C \doteq R_{E} \\
V_{C E} \oplus V_{C C}-I_{C} \oplus
\end{gathered}
$$

Example:
Determine the quiescent levels of $I_{C Q}$ and $V_{C E Q}$.

$$
\begin{aligned}
& \text { R }
\end{aligned}
$$

$$
\begin{aligned}
& I_{B} \boldsymbol{\nabla} \frac{V^{\prime}}{(2)} \\
& V^{\prime} \boldsymbol{\operatorname { l }} V_{C C}-V_{B E} \\
& I_{B} \frac{V^{\prime}}{R_{B}=R^{\prime}} I_{C Q} \text { 目 } \beta I_{B} \\
& I_{C Q} \boldsymbol{\nabla} \frac{\beta V^{\prime}}{R_{B} \cong \beta R^{\prime}} \cong \frac{\beta V^{\prime}}{\beta R^{\prime}} \frac{V^{\prime}}{R^{\prime}} \text { if } \beta R^{\prime} \gg R_{B}
\end{aligned}
$$

Solution：

$I_{C Q}$ 目 βI_{B} 园 90 冒 $11.940 \mathbf{T} 1.07 \mathrm{~mA}$

$$
\begin{aligned}
& \text { R } \\
& C \doteq \overbrace{E} \\
& \text { 色 } 4.7 k \leftrightarrows 1.2 k 0 \text { (13.69 } \mathrm{V} \\
& V_{C E} \boldsymbol{\square} V_{C C}-I_{C}{ }^{(1)}
\end{aligned}
$$

Home work：
Repeat last example if β 目 135

Example:

Determine the DC level of $I_{C Q}$ and $V_{C E Q}$

Solution:

$$
\begin{gathered}
\text { (+1) } \\
R_{B} \stackrel{+\infty}{\oplus} \beta \oplus \\
I_{B} \boldsymbol{\square} \frac{V_{C C}-V_{B E}}{(1)}
\end{gathered}
$$

$I_{C Q}$ (βI_{B} — 75 苗 35.5 @ 2.66 mA
V_{C} 目 $V_{C C}-I_{C}{ }_{C} R_{C} \cong V_{C C}-I_{C} R_{C}$

Saturation Conditions

Collector and base current :

Second year，Electronic i，2016－2017

1－Combination current：
I_{B} 目 $I_{E}-I_{C}$
$I^{\prime}{ }_{B} \boldsymbol{T}^{\prime}{ }_{E}-I^{\prime}{ }_{C}$
$I_{C} \boldsymbol{\nabla} \alpha I_{E}$
$I^{\prime}{ }_{C} \mathbf{\nabla} \alpha I^{\prime}{ }_{E}$
then I_{B}（1）

Reverse leakage current：

Then

$$
I_{C} \boldsymbol{\nabla} \alpha_{d c} I^{\prime}{ }_{E} \square I_{C O}
$$

Then

$$
\text { (1) } \frac{\alpha}{1-\alpha} I_{B} \boxminus \frac{\alpha}{1-\alpha} I_{C O}+I_{C O}
$$

（ㄱ）$\frac{\alpha}{1-\alpha} I_{B} \sqsubseteq \frac{\alpha}{1-\alpha} I_{C O}$

$$
I_{C} \text { 回 } \beta I_{B} \sqsupseteq \text { 票 } 1 \sqsubseteq \beta\left(9 I_{C O}\right.
$$

It is ratio of rate of change of I_{C} with respect to the reverse saturation current, keeping β and $V_{B E}$ constant

Other stability factors may be defined as

$$
S^{\prime} \boldsymbol{\operatorname { l i }} S \text { 冒 } \beta 0 \text { П } \frac{\partial I_{C}}{\partial \beta} \cong \frac{\Delta I_{C}}{\Delta \beta}
$$

1 Пी $1 \boxminus \beta \emptyset \frac{d I_{C O}}{d I_{C}} \boxminus \beta \frac{d I_{B}}{d I_{C}}$

For the fixed bias $\Rightarrow I_{B} \frac{\frac{V_{C C}}{\mathbf{R}_{b}} \circ d I_{B}}{d I_{C}} \mathbf{T} 0$
S П $\frac{1 \boxminus \beta}{1-\beta \frac{d I_{B}}{d I_{C}}} \boldsymbol{\Pi} \frac{1 \boxminus \beta}{1-0}$ П $1 \leftrightarrows \beta$

It means that for this circuit I_{C} increase 51 times as fast as $I_{C O}$
Networks that are quite stable and relatively insensitive to temperature variations have tow stability factor.

How to reduce (S)

In the figure．If $I_{C} \uparrow$（due to $\uparrow \square T \square \beta(1)$ ，then $V_{C E} \downarrow$
And hence $\quad I_{B} \downarrow$ and so also $I_{C} \downarrow$ and is not allowed to
Exceed as in fixed bias case．

I_{B}（i）$\frac{V_{C C}-I_{C} R_{C}-V_{B E}}{R_{C} \varlimsup^{\bullet} R_{b}}$

Then $\frac{\partial I_{B}}{\partial I_{C}} \boldsymbol{\nabla} \frac{-R_{C}}{R_{C} \sqsubseteq R_{b}}$
S 『 $\frac{1 \boxminus \beta}{1 \sqsubseteq \beta \frac{R_{C}}{R_{C} \sqsubseteq R_{b}}}: S$ 回 $\beta \sqsubseteq 1$
which is obtained for fixed bias

Minimum value of $\mathrm{S}>0$

Stabilization with change in β
$-V_{C C} \sqsubseteq$ 苗 $I_{B} \sqsubseteq I_{C} \upharpoonleft R_{C} \sqsubseteq I_{B} R_{B} \sqsubseteq V_{B E}$ 『 0
I_{C} 目 $1 \boxminus \beta \emptyset I_{C O} \square \beta I_{B} \quad$ from these two equation．

1－To reduce I_{C} insensitive to β ，we must $\beta R_{C} \gg R_{b}$ then

$$
I_{C} \cong \frac{1}{R_{C}} \odot V_{C C}-V_{B E} \equiv \text { 冒 } R_{C} \sqsubseteq R_{b} \oslash I_{C O}
$$

2－If $R_{b} \boldsymbol{\nabla} \beta R_{C}$ ，then sensitivity to variation in β is $\frac{1}{2}$ to what it would be，if fixed bias is used，

So feedback resistance $\quad R_{b}$ increases stability but the voltage gain of the amplifier is reduced．

Example:
Given $\quad \beta$ 50, Q at the middle of load line find $R_{b}{ }^{\circ} S$

Solution:
$I_{C} \frac{V_{C C}}{R_{C}} \frac{10}{250} 40 \mathrm{~mA}$

$R_{b} \mathbf{\#} \frac{V_{C C}-V_{B E}}{I_{B}} \frac{5-0.6}{0.4} \mathbf{\square} 11 \mathrm{k} \Omega \Rightarrow R_{B} \mathbb{\square} \frac{V_{C}-V_{B}}{I_{B}}$

But βR_{C} should be $\gg R_{b}$ to avoid sensitivity of I_{C}, β
βR_{C} [$50 \square 0.25$ I $12.5 \mathrm{k} \Omega$
$R_{b} \mathbf{Z} 11 k \Omega$

Electrical and Electronic Engineering Department
Second year, Electronic i, 2016-2017
lecture Ten by: Abdulgaffar S.

So this condition is not satisfied.

Self Bias or Emitter Bias

By thevenin's equivalent

$$
R_{b} \boldsymbol{\|} R_{1} \| R_{2}
$$

If $R_{b} \rightarrow 0$, then $V_{B N}$ is independent of $I_{C O}$ and hence

$$
S \boldsymbol{\operatorname { l i }} \frac{\partial I_{C}}{\partial I_{C O}} \rightarrow 1
$$

For best stability $\quad R_{1} \circ R_{2} \quad$ should be as small as possible.

$S \uparrow, s o \beta \uparrow \quad$ it is independent of $\quad \beta \quad$ stability decreases.
For small S, it is independent of β

$$
\begin{aligned}
& V_{T h} \boldsymbol{\mathbf { F } ^ { 2 }} \frac{R_{2} V_{C C}}{R_{1} \boxminus R_{2}} \quad \text { and } \quad R_{b} \boldsymbol{\square} \frac{R_{1} R_{2}}{R_{1} \sqsubseteq R_{2}} \\
& V_{T h} \text { 目 } I_{B} R_{b} \square V_{B E} \sqsubseteq I_{B} \sqsubseteq I_{C} \text { (J) } R_{e} \\
& \frac{\partial I_{B}}{\partial I_{C}} \boldsymbol{\Pi} \frac{-R_{e}}{R_{e} \sqsubseteq R_{b}}
\end{aligned}
$$

Second year, Electronic i, 2016-2017

Also a capacitance $C \odot 10 \mu F$ is used to by pass R_{e} to avoid the loss of AC signal.

Example:

 R_{e}, R_{1} and R_{2}

Solution:

$$
I_{C} R_{C} \sqsubseteq R_{e} \text { 冒 } I_{C} \sqsubseteq I_{B} \varrho \risingdotseq V_{B E} \text { 『 } V_{C C}
$$

Electrical and Electronic Engineering Department
Second year，Electronic i，2016－2017 ．M
lecture Ten by：Abdulgaffar S．

If $I_{C} \gg I_{B}$
$I_{C} R_{C} \risingdotseq R_{e}$ 回 $V_{C C}-V_{B E}$
$R_{C} \sqsubseteq R_{e} \frac{22.5-12}{1.5} \boldsymbol{\Pi} 7 \mathrm{k} \Omega$
R_{e} ？ $7-R_{C}$（1－5．6 $1.4 \mathrm{k} \Omega$

From this $\frac{R_{b}}{R_{e}}$ 国 $2.9 k \Omega, S$ will be <3

$$
I_{B} \boldsymbol{\square} \frac{I_{C}}{\beta} \frac{1.5 \mathrm{~mA}}{\beta} \boldsymbol{\square} \frac{1.5 \mathrm{~mA}}{50} \boldsymbol{\nabla} 30 \mu \mathrm{~A}
$$

Use equivalent circuit $\quad R_{b}$ 目 $R_{1} / / R_{2}$

$$
\begin{aligned}
& R_{1} 2.96 \frac{22.5}{2.83} 23.6 \mathrm{k} \Omega \\
& R_{2} \text { ? } 23.6 \frac{2.83}{22.5-2.83} \text { ? } 3.38 k \Omega
\end{aligned}
$$

Example：
2.2 .5 V

For the circuit shown below：Find Q－point \＆S

1 kO

Solution：

$$
V \boldsymbol{\Pi} \frac{22.5 \square 10}{90 \boxminus 10} \boldsymbol{\Pi} 2.25 V \boldsymbol{\Pi} V_{2}
$$

$$
R_{b} \mathbf{\nabla} \frac{10 \square 90}{10 \square 90} \boldsymbol{\square} 9 k
$$

Let $V_{B E} \mathbf{\nabla} 0.6 \mathrm{~V}$

$$
V_{C C} \mathbf{\nabla} I_{C} R_{C} \boxminus R_{e} \text { 冒 } I_{C} \sqsubseteq I_{B} @ \boxminus V_{C E}
$$

For collector circuit
$22.5=5.6 \quad I_{C} \boxminus 1$ 苗 $I_{C} \sqsubseteq I_{B} Q \boxminus V_{C E}$
For base circuit
$2.25=0.6+1 \mathrm{k}\left(I_{C} \sqsubseteq I_{B} \oplus \Xi_{B}\right.$
Eliminate I_{C} from these tow equation
$V_{C E}$［ $65 I_{B} \equiv 11.6$ it ＇s called biasing line
Q－point is

$$
\begin{aligned}
& V_{C E} 12 \mathrm{~V} \\
& I_{C} 1.4 \mathrm{~mA} \\
& I_{B} 26 \mu \mathrm{~A}
\end{aligned}
$$

Alternatively，if dc in not available，one can to calculation from β ．At active region $I_{B} \gg I_{C_{0}}$ ，so I_{C} 目 βI_{B}
I_{C} 目 β 国 $10 I_{C o}$ 国 βI_{B}
$I_{B} \boldsymbol{\nabla} \frac{I_{C}}{\beta} \boldsymbol{I _ { C }} \frac{I_{C}}{55} \quad$ and from base equation
$.25=0.6+1 \mathrm{k}\left(\quad I_{C} \stackrel{\square}{Ð} I_{B} \oplus 9 I_{B}\right.$
$.25=0.6+1 \mathrm{k}\left(\quad I_{C} \sqsubseteq \frac{I_{C}}{55} \oplus 9 \frac{I_{C}}{55}\right.$
$\therefore I_{C}$ 园 1.4 mA
I_{B} 眮 $\frac{1.4 m A}{55} 25.5 \mu A$

These values are very close to these found from dc. From collector equation, can find $V_{C E}$
$-22.5+6.6 \oplus 1.4 \bigoplus 25.5 * 10^{-3} \boxminus V_{C E}$

$$
\therefore V_{C E} 13.2 \mathrm{~V}
$$

b)
$\frac{R_{b}}{R_{e}} \boldsymbol{F} \frac{9 k}{1 k} \boldsymbol{\operatorname { l i }} 9$

Compare with fixed bias circuit

Bias Compensation:

There is loss in gain in earlier discussed techniques. The bias compensation techniques are used to reduce drift of Q .

Diode Compensation for $V_{B E}$:

If diode (D) and BE junction is with same material then
the junction across diode has same temperature coefficient
$\left(-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C} \quad\right)$ and the BE junction voltage $V_{B E}$.
If $\quad T \uparrow I_{C} \uparrow \Rightarrow I_{E} \uparrow$

$$
\downarrow I_{D} \risingdotseq I_{E} \text { П! } I_{R_{d}}
$$

$I_{R_{d}} \rightarrow$ const.

7, OMESES

1. Derive a mathematical expression to determine the stability factor S 令 $\left.V_{C C}\right) \Delta I_{C} \Delta V_{C C}$ for the emitter-stabilized bias circuit.
2. Discuss and compare (by equations) between the relative levels of stability for the following biasing circuits:
i. the fixed-bias circuit,
ii. the emitter-stabilized bias circuit,
iii. the voltage-divider bias circuit, and
iv. the voltage-feedback circuit
